zoukankan      html  css  js  c++  java
  • 机器学习(6)——逻辑回归

    什么是逻辑回归

    逻辑回归虽然名字有回归,但解决的是分类问题。

    逻辑回归既可以看做回归算法,也可以看做是分类算法,通常作为分类算法用,只可以解决二分类问题。

    Sigmoid函数:

    import numpy as np
    import matplotlib.pyplot as plt
    
    def sigmoid(t):
        return 1 / (1+np.exp(-t))
        
    x=np.linspace(-10,10,500)
    y=sigmoid(x)
    plt.plot(x,y)
    plt.show()
    

    逻辑回归的损失函数

    推导过程这里就不赘述了,高等数学基本知识。

    向量化:

    逻辑回归的向量化梯度:

    LogisticRegression.py:

    import numpy as np
    from .metrics import accuracy_score
    
    class LogisticRegression:
    
        def __init__(self):
            """初始化Logistic Regression模型"""
            self.coef_ = None
            self.intercept_ = None
            self._theta = None
    
        def _sigmoid(self, t):
            return 1. / (1. + np.exp(-t))
    
        def fit(self, X_train, y_train, eta=0.01, n_iters=1e4):
            """根据训练数据集X_train, y_train, 使用梯度下降法训练Logistic Regression模型"""
            assert X_train.shape[0] == y_train.shape[0], 
                "the size of X_train must be equal to the size of y_train"
    
            def J(theta, X_b, y):
                y_hat = self._sigmoid(X_b.dot(theta))
                try:
                    return - np.sum(y*np.log(y_hat) + (1-y)*np.log(1-y_hat)) / len(y)
                except:
                    return float('inf')
    
            def dJ(theta, X_b, y):
                return X_b.T.dot(self._sigmoid(X_b.dot(theta)) - y) / len(y)
    
            def gradient_descent(X_b, y, initial_theta, eta, n_iters=1e4, epsilon=1e-8):
    
                theta = initial_theta
                cur_iter = 0
    
                while cur_iter < n_iters:
                    gradient = dJ(theta, X_b, y)
                    last_theta = theta
                    theta = theta - eta * gradient
                    if (abs(J(theta, X_b, y) - J(last_theta, X_b, y)) < epsilon):
                        break
    
                    cur_iter += 1
    
                return theta
    
            X_b = np.hstack([np.ones((len(X_train), 1)), X_train])
            initial_theta = np.zeros(X_b.shape[1])
            self._theta = gradient_descent(X_b, y_train, initial_theta, eta, n_iters)
    
            self.intercept_ = self._theta[0]
            self.coef_ = self._theta[1:]
    
            return self
    
        def predict_proba(self, X_predict):
            """给定待预测数据集X_predict,返回表示X_predict的结果概率向量"""
            assert self.intercept_ is not None and self.coef_ is not None, 
                "must fit before predict!"
            assert X_predict.shape[1] == len(self.coef_), 
                "the feature number of X_predict must be equal to X_train"
    
            X_b = np.hstack([np.ones((len(X_predict), 1)), X_predict])
            return self._sigmoid(X_b.dot(self._theta))
    
        def predict(self, X_predict):
            """给定待预测数据集X_predict,返回表示X_predict的结果向量"""
            assert self.intercept_ is not None and self.coef_ is not None, 
                "must fit before predict!"
            assert X_predict.shape[1] == len(self.coef_), 
                "the feature number of X_predict must be equal to X_train"
    
            proba = self.predict_proba(X_predict)
            return np.array(proba >= 0.5, dtype='int')
    
        def score(self, X_test, y_test):
            """根据测试数据集 X_test 和 y_test 确定当前模型的准确度"""
    
            y_predict = self.predict(X_test)
            return accuracy_score(y_test, y_predict)
    
        def __repr__(self):
            return "LogisticRegression()"
    
    

    使用鸢尾花数据集,因为有三个特征,而逻辑回归只适合二分类问题,所以我们取前2个特征实验:

    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn import datasets
    
    iris=datasets.load_iris()
    
    X=iris.data
    y=iris.target
    
    X=X[y<2,:2]
    y=y[y<2]
    
    plt.scatter(X[y==0,0],X[y==0,1],color="red")
    plt.scatter(X[y==1,0],X[y==1,1],color="blue")
    plt.show()
    

    %run f:python3玩转机器学习逻辑回归LogisticRegression.py
    
    from sklearn.model_selection import train_test_split
    X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=666)
    
    log_reg=LogisticRegression()
    log_reg.fit(X_train,y_train)
    
    log_reg.score(X_test,y_test)
    log_reg.predict_proba(X_test)
    log_reg.predict(X_test)
    

    准确率100%。

    决策边界

    绘制决策边界:

    def x2(x1):
        return (-log_reg.coef_[0] * x1 - log_reg.intercept_)/log_reg.coef_[1]
        
    x1_plot=np.linspace(4,8,1000)
    x2_plot=x2(x1_plot)
    
    plt.scatter(X[y==0,0],X[y==0,1],color="red")
    plt.scatter(X[y==1,0],X[y==1,1],color="blue")
    plt.plot(x1_plot,x2_plot)
    plt.show()
    

    其中那个分类错误的红点是训练数据集中的点。

    不规则的决策边界绘制方法:

    如图,遍历每个点,看它属于哪个类。

    def plot_decision_boundary(model, axis):
        
        x0, x1 = np.meshgrid(
            np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*100)).reshape(-1, 1),
            np.linspace(axis[2], axis[3], int((axis[3]-axis[2])*100)).reshape(-1, 1),
        )
        X_new = np.c_[x0.ravel(), x1.ravel()]
    
        y_predict = model.predict(X_new)
        zz = y_predict.reshape(x0.shape)
    
        from matplotlib.colors import ListedColormap
        custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])
        
        plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap)
        
    plot_decision_boundary(log_reg, axis=[4, 7.5, 1.5, 4.5])
    plt.scatter(X[y==0,0], X[y==0,1])
    plt.scatter(X[y==1,0], X[y==1,1])
    plt.show()
    

    KNN的决策边界:

    from sklearn.neighbors import KNeighborsClassifier
    knn_clf=KNeighborsClassifier()
    knn_clf.fit(X_train,y_train)
    
    knn_clf.score(X_test,y_test)
    
    plot_decision_boundary(knn_clf,axis=[4,7.5,1.5,4.5])
    plt.scatter(X[y==0,0],X[y==0,1])
    plt.scatter(X[y==1,0],X[y==1,1])
    plt.show()
    

    knn_clf_all=KNeighborsClassifier()
    knn_clf_all.fit(iris.data[:,:2],iris.target)
    
    plot_decision_boundary(knn_clf_all,axis=[4,8,1.5,4.5])
    plt.scatter(iris.data[iris.target==0,0],iris.data[iris.target==0,1])
    plt.scatter(iris.data[iris.target==1,0],iris.data[iris.target==1,1])
    plt.scatter(iris.data[iris.target==2,0],iris.data[iris.target==2,1])
    
    plt.show()
    

    发现黄蓝的决策边界很陡峭,这是因为KNN的k越小,那么模型越复杂,可能会过拟合。

    取k=50:

    knn_clf_all=KNeighborsClassifier(n_neighbors=50)
    knn_clf_all.fit(iris.data[:,:2],iris.target)
    
    plot_decision_boundary(knn_clf_all,axis=[4,8,1.5,4.5])
    plt.scatter(iris.data[iris.target==0,0],iris.data[iris.target==0,1])
    plt.scatter(iris.data[iris.target==1,0],iris.data[iris.target==1,1])
    plt.scatter(iris.data[iris.target==2,0],iris.data[iris.target==2,1])
    
    plt.show()
    
    

    在逻辑回归中使用多项式特征

    import numpy as np
    
    
    import matplotlib.pyplot as plt
    
    np.random.seed(666)
    X=np.random.normal(0,1,size=(200,2))
    y=np.array(X[:,0]**2+X[:,1]**2<1.5,dtype='int')
    
    plt.scatter(X[y==0,0],X[y==0,1])
    plt.scatter(X[y==1,0],X[y==1,1])
    plt.show()
    
    

    %run f:python3玩转机器学习逻辑回归LogisticRegression.py
    
    log_reg=LogisticRegression()
    log_reg.fit(X,y)
    
    log_reg.score(X,y)
    
    def plot_decision_boundary(model, axis):
        
        x0, x1 = np.meshgrid(
            np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*100)).reshape(-1, 1),
            np.linspace(axis[2], axis[3], int((axis[3]-axis[2])*100)).reshape(-1, 1),
        )
        X_new = np.c_[x0.ravel(), x1.ravel()]
    
        y_predict = model.predict(X_new)
        zz = y_predict.reshape(x0.shape)
    
        from matplotlib.colors import ListedColormap
        custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])
        
        plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap)
        
    plot_decision_boundary(log_reg,axis=[-4,4,-4,4])
    plt.scatter(X[y==0,0],X[y==0,1])
    plt.scatter(X[y==1,0],X[y==1,1])
    plt.show()
    
    

    发现准确率很低,这是因为逻辑回归默认是用一条直线分类的,我们用多项式试一下:

    from sklearn.pipeline import Pipeline
    from sklearn.preprocessing import PolynomialFeatures
    from sklearn.preprocessing import StandardScaler
    def PolynomialLogisticRegression(degree):
        return Pipeline([
            ('poly',PolynomialFeatures(degree=degree)),
            ('std_scaler',StandardScaler()),
            ('log_reg',LogisticRegression())
        ])
    
    poly_log_reg=PolynomialLogisticRegression(degree=2)
    poly_log_reg.fit(X,y)
    
    poly_log_reg.score(X,y)
    
    plot_decision_boundary(poly_log_reg,axis=[-4,4,-4,4])
    plt.scatter(X[y==0,0],X[y==0,1])
    plt.scatter(X[y==1,0],X[y==1,1])
    plt.show()
    
    

    用二次多项式准确率就比较高了,我们再试一下20次多项式:

    poly_log_reg20=PolynomialLogisticRegression(degree=20)
    poly_log_reg20.fit(X,y)
    
    poly_log_reg20.score(X,y)
    
    plot_decision_boundary(poly_log_reg20,axis=[-4,4,-4,4])
    plt.scatter(X[y==0,0],X[y==0,1])
    plt.scatter(X[y==1,0],X[y==1,1])
    plt.show()
    
    

    形状及其不规则,明显是过拟合了,我们可以降低多项式的级数,当然使用正则化是更好的选择。

    scikit-learn中的逻辑回归

    逻辑回归的正则化:

    import numpy as np
    import matplotlib.pyplot as plt
    
    np.random.seed(666)
    X=np.random.normal(0,1,size=(200,2))
    y=np.array(X[:,0]**2+X[:,1]<1.5,dtype='int')
    for _ in range(20): #添加噪音
        y[np.random.randint(200)]=1
        
    plt.scatter(X[y==0,0],X[y==0,1])
    plt.scatter(X[y==1,0],X[y==1,1])
    plt.show()
    
    

    用线性逻辑回归:

    from sklearn.model_selection import train_test_split
    X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=666)
    
    from sklearn.linear_model import LogisticRegression
    log_reg = LogisticRegression()
    log_reg.fit(X_train,y_train)
    
    log_reg.score(X_train,y_train)
    
    log_reg.score(X_test,y_test)
    
    

    发现准确率较低,因为我们造的数据是抛物线。绘制一下:

    def plot_decision_boundary(model, axis):
        
        x0, x1 = np.meshgrid(
            np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*100)).reshape(-1, 1),
            np.linspace(axis[2], axis[3], int((axis[3]-axis[2])*100)).reshape(-1, 1),
        )
        X_new = np.c_[x0.ravel(), x1.ravel()]
    
        y_predict = model.predict(X_new)
        zz = y_predict.reshape(x0.shape)
    
        from matplotlib.colors import ListedColormap
        custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])
        
        plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap)
        
    plot_decision_boundary(log_reg,axis=[-4,4,-4,4])
    plt.scatter(X[y==0,0],X[y==0,1])
    plt.scatter(X[y==1,0],X[y==1,1])
    plt.show()
    
    

    用二次多项式逻辑回归:

    from sklearn.pipeline import Pipeline
    from sklearn.preprocessing import PolynomialFeatures
    from sklearn.preprocessing import StandardScaler
    def PolynomialLogisticRegression(degree):
        return Pipeline([
            ('poly',PolynomialFeatures(degree=degree)),
            ('std_scaler',StandardScaler()),
            ('log_reg',LogisticRegression())
        ])  
        
    poly_log_reg=PolynomialLogisticRegression(degree=2)
    poly_log_reg.fit(X_train,y_train)
    
    

    返回的penalty就是正则化方式,默认是l2正则,即岭回归。

    poly_log_reg.score(X_train,y_train)
    
    poly_log_reg.score(X_test,y_test)
    
    

    发现准确率比较高了。

    plot_decision_boundary(poly_log_reg,axis=[-4,4,-4,4])
    plt.scatter(X[y==0,0],X[y==0,1])
    plt.scatter(X[y==1,0],X[y==1,1])
    plt.show()
    
    

    20次多项式逻辑回归:

    poly_log_reg2=PolynomialLogisticRegression(degree=20)
    poly_log_reg2.fit(X_train,y_train)
    
    poly_log_reg2.score(X_train,y_train)
    
    poly_log_reg2.score(X_test,y_test)
    
    plot_decision_boundary(poly_log_reg2,axis=[-4,4,-4,4])
    plt.scatter(X[y==0,0],X[y==0,1])
    plt.scatter(X[y==1,0],X[y==1,1])
    plt.show()
    
    

    发现准确率下降了,根据图就可以看出过拟合了,图形很复杂,但因数据比较弱,所以准确率降低的比较少。

    令C=0.1,l2正则:

    def PolynomialLogisticRegression(degree,C):#C是比重
        return Pipeline([
            ('poly',PolynomialFeatures(degree=degree)),
            ('std_scaler',StandardScaler()),
            ('log_reg',LogisticRegression(C=C))
        ])
        
    poly_log_reg3=PolynomialLogisticRegression(degree=20,C=0.1)
    poly_log_reg3.fit(X_train,y_train)
    
    poly_log_reg3.score(X_train,y_train)
    
    poly_log_reg3.score(X_test,y_test)
    
    plot_decision_boundary(poly_log_reg3,axis=[-4,4,-4,4])
    plt.scatter(X[y==0,0],X[y==0,1])
    plt.scatter(X[y==1,0],X[y==1,1])
    plt.show()
    
    

    图形比上面的要规则一点,但准确率较低。

    令C=0.1,换成l1正则:

    def PolynomialLogisticRegression(degree,C,penalty='l2'):#C是比重
        return Pipeline([
            ('poly',PolynomialFeatures(degree=degree)),
            ('std_scaler',StandardScaler()),
            ('log_reg',LogisticRegression(C=C,penalty=penalty))
        ])
        
    poly_log_reg4=PolynomialLogisticRegression(degree=20,C=0.1,penalty='l1')
    poly_log_reg4.fit(X_train,y_train)
    
    poly_log_reg4.score(X_train,y_train)
    
    poly_log_reg4.score(X_test,y_test)
    
    plot_decision_boundary(poly_log_reg4,axis=[-4,4,-4,4])
    plt.scatter(X[y==0,0],X[y==0,1])
    plt.scatter(X[y==1,0],X[y==1,1])
    plt.show()
    
    

    虽然准确率降低了,但决策边界比较符合我们创造的抛物线了,这是因为l1正则(lasso回归)会尽可能使一些theta为0,起到特征选择。

    当然,C这个超参数也可以通过网格搜索来寻找。

    OvR与OvO

    解决多分类问题:OvR、OvO

    OvR(One vs Rest):

    OvO(One vs One):

    虽然OvO更费时,但准确率要高。

    使用鸢尾花数据集来测试:

    先取前两个特征:

    ovr:

    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn import datasets
    
    iris=datasets.load_iris()
    X=iris.data[:,:2]
    y=iris.target
    
    from sklearn.model_selection import train_test_split
    X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=666)
    
    from sklearn.linear_model import LogisticRegression
    
    log_reg=LogisticRegression(multi_class='ovr')
    log_reg.fit(X_train,y_train)
    
    log_reg.score(X_test,y_test)
    
    

    def plot_decision_boundary(model, axis):
        
        x0, x1 = np.meshgrid(
            np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*100)).reshape(-1, 1),
            np.linspace(axis[2], axis[3], int((axis[3]-axis[2])*100)).reshape(-1, 1),
        )
        X_new = np.c_[x0.ravel(), x1.ravel()]
    
        y_predict = model.predict(X_new)
        zz = y_predict.reshape(x0.shape)
    
        from matplotlib.colors import ListedColormap
        custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])
        
        plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap)
        
    plot_decision_boundary(log_reg,axis=[4,8.5,1.5,4.5])
    plt.scatter(X[y==0,0],X[y==0,1])
    plt.scatter(X[y==1,0],X[y==1,1])
    plt.scatter(X[y==2,0],X[y==2,1])
    plt.show()
    
    

    ovo:

    log_reg2=LogisticRegression(multi_class='multinomial',solver="newton-cg")#ovo必须换求解方法
    
    log_reg2.fit(X_train,y_train)
    log_reg2.score(X_test,y_test)
    
    
    
    

    可见ovo准确率是比ovr高的。

    我们再用所有特征测试一下:

    X=iris.data
    y=iris.target
    X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=666)
    
    log_reg=LogisticRegression()
    log_reg.fit(X_train,y_train)
    log_reg.score(X_test,y_test)
    
    log_reg2=LogisticRegression(multi_class='multinomial',solver="newton-cg")
    log_reg2.fit(X_train,y_train)
    log_reg2.score(X_test,y_test)
    
    

    ovo准确率达到了1。

    其实scikit-learn中有OVR和OVO这两个类,以便所有二分类分类器都可以使用:

    ovr:

    from sklearn.multiclass import OneVsRestClassifier
    
    ovr=OneVsRestClassifier(log_reg)
    ovr.fit(X_train,y_train)
    ovr.score(X_test,y_test)
    
    
    

    from sklearn.multiclass import OneVsOneClassifier
    
    ovo=OneVsOneClassifier(log_reg)
    ovo.fit(X_train,y_train)
    ovo.score(X_test,y_test)
    
    

  • 相关阅读:
    主外键 子查询
    正则表达式
    css3 文本效果
    css3 2d
    sql 基本操作
    插入 视频 音频 地图
    j-query j-query
    document
    js dom 操作
    js
  • 原文地址:https://www.cnblogs.com/mcq1999/p/11665386.html
Copyright © 2011-2022 走看看