题意
https://www.luogu.com.cn/problem/P2260
思路
具体思路见下图:
注意这个模数不是质数,不能用快速幂来求逆元,要用扩展gcd。
代码
#include<bits/stdc++.h> using namespace std; #define inf 0x3f3f3f3f #define ll long long const int N=200005; const int mod=19940417; const double eps=1e-8; const double PI = acos(-1.0); #define lowbit(x) (x&(-x)) ll inv2,inv6,y; void exgcd(ll a, ll b, ll& x, ll& y) { if (b == 0) { x = 1, y = 0; return; } exgcd(b, a % b, y, x); y -= a / b * x; } ll s(ll x) { return x%mod*(x+1)%mod*(2*x+1)%mod*inv6%mod; } ll f(ll x,ll mx) { ll l,r,ans=0; for(l=1; l<=mx; l=r+1) { r=min(mx,x/(x/l)); ans=(ans+(l+r)%mod*(r-l+1)%mod*inv2%mod*(x/l)%mod)%mod; } return ans; } int main() { std::ios::sync_with_stdio(false); exgcd(6,mod,inv6,y); inv6=(inv6+mod)%mod; exgcd(2,mod,inv2,y); inv2=(inv2+mod)%mod; ll n,m; cin>>n>>m; ll ans=(n%mod*n%mod-f(n,n)%mod+mod)%mod*(m%mod*m%mod-f(m,m)%mod+mod)%mod; ll mn=min(n,m); ans=(ans-m%mod*n%mod*mn%mod+mod+f(n,mn)%mod*m%mod+f(m,mn)%mod*n%mod)%mod; ll l,r; for(l=1; l<=mn; l=r+1) { r=min(m/(m/l),n/(n/l)); ans=(ans-(n/l)%mod*(m/l)%mod*(s(r)-s(l-1)%mod)%mod+mod)%mod; } cout<<ans<<endl; return 0; }