zoukankan      html  css  js  c++  java
  • sklearn学习一

    转发说明:by majunman    from HIT    email:2192483210@qq.com

    简介:scikit-learn是数据挖掘和数据分析的有效工具,它建立在 NumPy, SciPy, and matplotlib基础上。开源的但商业不允许

    1. Supervised learning

    1.1. Generalized Linear Models

    1.1.1. Ordinary Least Squares最小二乘法

    >>> from sklearn import linear_model
    >>> reg = linear_model.LinearRegression()
    >>> reg.fit ([[0, 0], [1, 1], [2, 2]], [0, 1, 2])
    LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
    >>> reg.coef_
    array([ 0.5,  0.5])
    

    reg-http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression

    reg.coef_   是回归函数的结果,即相关系数

    具体实验:

    print(__doc__)
    
    
    # Code source: Jaques Grobler
    # License: BSD 3 clause
    
    
    import matplotlib.pyplot as plt
    import numpy as np
    from sklearn import datasets, linear_model
    from sklearn.metrics import mean_squared_error, r2_score
    
    # Load the diabetes dataset
    diabetes = datasets.load_diabetes()   #加载diabetes数据集(sklearn提供的几种数据集之一,该数据是糖尿病数据集)
    
    
    # Use only one feature
    diabetes_X = diabetes.data[:, np.newaxis, 2]   #只加载一个特征值
    
    # Split the data into training/testing sets
    diabetes_X_train = diabetes_X[:-20]
    diabetes_X_test = diabetes_X[-20:]
    
    # Split the targets into training/testing sets
    diabetes_y_train = diabetes.target[:-20]
    diabetes_y_test = diabetes.target[-20:]
    
    # Create linear regression object
    regr = linear_model.LinearRegression()
    
    # Train the model using the training sets
    regr.fit(diabetes_X_train, diabetes_y_train)
    
    # Make predictions using the testing set
    diabetes_y_pred = regr.predict(diabetes_X_test)
    
    # The coefficients
    print('Coefficients: 
    ', regr.coef_)
    # The mean squared error
    print("Mean squared error: %.2f"
          % mean_squared_error(diabetes_y_test, diabetes_y_pred))
    # Explained variance score: 1 is perfect prediction
    print('Variance score: %.2f' % r2_score(diabetes_y_test, diabetes_y_pred))
    
    # Plot outputs
    plt.scatter(diabetes_X_test, diabetes_y_test,  color='black')
    plt.plot(diabetes_X_test, diabetes_y_pred, color='blue', linewidth=3)
    
    plt.xticks(())
    plt.yticks(())
    
    plt.show()
    

      

  • 相关阅读:
    地铁开发进度1
    人月神话阅读笔记二
    学习进度五
    人月神话阅读笔记一
    WebView的用法:
    图框联动
    阅读笔记《人月神话》一
    5
    4
    3
  • 原文地址:https://www.cnblogs.com/mdumpling/p/7694297.html
Copyright © 2011-2022 走看看