这里的p(y=1|x)计算基于朴素贝叶斯模型(周志华老师机器学习书上说的p(xi|y=1)=|Dc,xi|/|Dc|)
也可以基于文本分类的事件模型
见http://blog.csdn.net/app_12062011/article/details/50540429有详细介绍
代码是机器学习实战所呈现的那种方式。。。。。。
# -*- coding: utf-8 -*- """ Created on Mon Aug 07 23:40:13 2017 @author: mdz """ import numpy as np def loadData(): vocabList=[['fuck', 'dog', 'has', 'flea', 'problems', 'help', 'please'], ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'], ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'], ['stop', 'posting', 'stupid', 'worthless', 'garbage'], ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'], ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']] classList=[1,1,0,1,0,1]#1 侮辱性文字,0 正常言论 return vocabList,classList #对vocabList已经拆分过的句子进行筛选,筛选掉重复的单词,最后再返回list #该list的length即属性的个数 def filterVocabList(vocabList): vocabSet=set([]) for document in vocabList: vocabSet=vocabSet|set(document) return list(vocabSet) #对测试样本进行0-1处理 def zero_one(vocabList,input): returnVec=[0]*len(vocabList) for word in input: if word in vocabList: returnVec[vocabList.index(word)]=1 else: print "the word: %s is not in my Vocabulary!"%word return returnVec def trainNbc(trainSamples,trainCategory): numTrainSamp=len(trainSamples) numWords=len(trainSamples[0]) pAbusive=sum(trainCategory)/float(numTrainSamp) #y=1 or 0下的特征取值为1 p0Num=np.ones(numWords) p1Num=np.ones(numWords) #y=1 or 0下的样本计数 p0NumTotal=2.0#每个特征可能的取值2种情况 p1NumTotal=2.0 for i in range(numTrainSamp): if trainCategory[i]==1: p1Num+=trainSamples[i] p1NumTotal+=1 else: p0Num+=trainSamples[i] p0NumTotal+=1 p1Vec=p1Num/float(p1NumTotal) p0Vec=p0Num/float(p0NumTotal) return p1Vec,p0Vec,pAbusive def classifyOfNbc(testSamples,p1Vec,p0Vec,pAbusive): p1=sum(testSamples*np.log(p1Vec))+sum((1-testSamples)*np.log(1-p1Vec))+np.log(pAbusive) p0=sum(testSamples*np.log(p0Vec))+sum((1-testSamples)*np.log(1-p0Vec))+np.log(pAbusive) if p1>p0: return 1 else: return 0 def testingNbc(): vocabList,classList=loadData() vocabSet=filterVocabList(vocabList) trainList=[] for term in vocabList: trainList.append(zero_one(vocabSet,term)) p1Vec,p0Vec,pAbusive=trainNbc(np.array(trainList),np.array(classList)) testEntry=['fuck','my','daughter'] testSamples=np.array(zero_one(vocabSet,testEntry)) print testEntry,'classified as :',classifyOfNbc(testSamples,p1Vec,p0Vec,pAbusive) testEntry=['stupid','garbage'] testSamples=np.array(zero_one(vocabSet,testEntry)) print testEntry,'classified as :',classifyOfNbc(testSamples,p1Vec,p0Vec,pAbusive) '''上述代码存为bayesClassify.py''' '''控制台输入 :>>>import bayesClassify >>>bayesClassify.testingNbc() '''输出结果: the word: daughter is not in my Vocabulary! ['fuck', 'my', 'daughter'] classified as : 1 ['stupid', 'garbage'] classified as : 1 '''