1、迭代器
迭代器是访问集合元素的一种方式。迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退,不过这也没什么,因为人们很少在迭代途中往后退。另外,迭代器的一大优点是不要求事先准备好整个迭代过程中所有的元素。迭代器仅仅在迭代到某个元素时才计算该元素,而在这之前或之后,元素可以不存在或者被销毁。这个特点使得它特别适合用于遍历一些巨大的或是无限的集合,比如几个G的文件
特点:
- 访问者不需要关心迭代器内部的结构,仅需通过next()方法不断去取下一个内容
- 不能随机访问集合中的某个值 ,只能从头到尾依次访问
- 访问到一半时不能往回退
- 便于循环比较大的数据集合,节省内存
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
>>> a = iter ([ 1 , 2 , 3 , 4 , 5 ]) >>> a <list_iterator object at 0x101402630 > >>> a.__next__() 1 >>> a.__next__() 2 >>> a.__next__() 3 >>> a.__next__() 4 >>> a.__next__() 5 >>> a.__next__() Traceback (most recent call last): File "<stdin>" , line 1 , in <module> StopIteration |
2、生成器
一个函数调用时返回一个迭代器,那这个函数就叫做生成器(generator);如果函数中包含yield语法,那这个函数就会变成生成器;
1
2
3
4
5
|
def func(): yield 1 yield 2 yield 3 yield 4 |
上述代码中:func是函数称为生成器,当执行此函数func()时会得到一个迭代器。
1
2
3
4
5
6
7
8
9
10
11
12
13
|
>>> temp = func() >>> temp.__next__() 1 >>> temp.__next__() 2 >>> temp.__next__() 3 >>> temp.__next__() 4 >>> temp.__next__() Traceback (most recent call last): File "<stdin>" , line 1 , in <module> StopIteration |
3、实例
a、利用生成器自定义range
1
2
3
4
5
6
7
8
|
def nrange(num): temp = - 1 while True : temp = temp + 1 if temp > = num: return else : yield temp |