一、关于 NDCG
[LTR] 信息检索评价指标(RP/MAP/DCG/NDCG/RR/ERR)
二、代码实现
1、训练数据的加载解析
import scala.io.Source
/*
* 训练行数据
* */
case class TrainDataRow(target: Int, qid: Int, features: Array[Double])
object TrainDataRow {
// 加载文件数据
// 格式:
// <line> .=. <target> qid:<qid> <feature>:<value> <feature>:<value> ... <feature>:<value> # <info>
// <target> .=. <positive integer>
// <qid> .=. <positive integer>
// <feature> .=. <positive integer>
// <value> .=. <float>
// <info> .=. <string>
def loadFile(file: String): List[TrainDataRow] = {
Source.fromFile(file).getLines.toList.par.map(x => {
val strArray = x.split(' ')
val label = strArray(0).toInt
val qid = strArray(1).split(':')(1).toInt
val fValArray = strArray.drop(2).map(x => x.split(':')(1).toDouble)
new TrainDataRow(label, qid, fValArray)
}).toList
}
}
2、NDCG 的实现
object NDCG {
/*
* 计算 NDCG 分值
* */
def score(rows: List[TrainDataRow], k: Int): Double = {
val size = k.min(rows.length - 1)
// 理想 DCG
var idealDcg: Double = 0
val sortedList = rows.sortWith((x, y) => x.target > y.target)
for (i <- 0 to size) {
// 计算累计效益
val gain = (1 << sortedList(i).target) - 1
// 计算折扣因子
val discount = 1.0 / (Math.log(i + 2) / Math.log(2))
idealDcg += gain * discount
}
if (idealDcg > 0) {
var dcg: Double = 0
for (i <- 0 to size) {
// 计算累计效益
val gain = (1 << rows(i).target) - 1
// 计算折扣因子
val discount = 1.0 / (Math.log(i + 2) / Math.log(2))
dcg += gain * discount
}
dcg / idealDcg
}
else 0
}
}
3、训练数据集的 NDCG 计算
def calcNDCG(trainDataFile: String, k: Int): Double = {
println("开始计算...")
val start = System.nanoTime()
val data = TrainDataRow.loadFile(trainDataFile) // 加载训练数据文件
println("数据量:" + data.length + ",用时:" + (System.nanoTime() - start) / 1000000 + " ms")
val grpData: Map[Int, List[TrainDataRow]] = data.groupBy(_.qid) // 根据 qid 分组
val resultNDCG = grpData.map(x => NDCG.score(x._2, k)).sum / grpData.size
println(s"NDCG@$k: $resultNDCG")
val end = System.nanoTime()
println("计算运行时间:" + (end - start) / 1000000 + " ms")
resultNDCG
}
by. Memento