题意:Q是询问区间和,C是在区间内每个节点加上一个值
Sample Input
10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4
Sample Output
4
55
9
15
1 # include <iostream> 2 # include <cstdio> 3 # include <cstring> 4 # include <algorithm> 5 # include <cmath> 6 # include <queue> 7 # define LL long long 8 using namespace std ; 9 10 11 const int maxn = 100010; 12 13 LL sum[maxn<<2] ; //结点开4倍 14 LL add[maxn<<2] ; //延迟标记 15 16 void PushUP(int rt) //更新到父节点 17 { 18 sum[rt] = sum[rt * 2] + sum[rt * 2 + 1] ; //rt 为当前结点 19 } 20 21 void PushDown(int rt , int m ) //向下更新 22 { 23 if (add[rt]) 24 { 25 add[rt * 2] += add[rt] ; 26 add[rt * 2 + 1] += add[rt] ; 27 sum[rt * 2] += (m - m / 2) * add[rt] ; 28 sum[rt * 2 + 1] += (m / 2) * add[rt] ; 29 add[rt] = 0 ; 30 } 31 } 32 33 void build(int l , int r , int rt) //构建线段树 34 { 35 add[rt] = 0 ; 36 if (l == r) 37 { 38 cin>>sum[rt]; 39 return ; 40 } 41 int m = (l + r) / 2 ; 42 build(l , m , rt * 2) ; 43 build(m + 1 , r , rt * 2 +1) ; 44 PushUP(rt) ; 45 } 46 47 void updata(int L , int R , int c , int l , int r , int rt) //成段增减 48 { 49 if (L <= l && r <= R) 50 { 51 add[rt] += c ; 52 sum[rt] += (r - l + 1) * c ; 53 return ; 54 } 55 PushDown(rt , r - l + 1) ; 56 int m = (l + r) / 2 ; 57 58 if (L <= m) 59 updata(L , R , c , l , m , rt * 2) ; 60 if (R > m) 61 updata(L , R , c , m + 1 , r , rt * 2 + 1) ; 62 PushUP(rt) ; 63 } 64 65 LL query(int L , int R , int l , int r , int rt) //区间求和 66 { 67 if (L <= l && r <= R) 68 return sum[rt] ; 69 PushDown(rt , r - l + 1) ; 70 int m = (l + r) / 2 ; 71 LL ret = 0 ; 72 if (L <= m) 73 ret += query(L , R , l , m , rt * 2) ; 74 if (R > m) 75 ret += query(L , R , m + 1 , r , rt * 2 + 1) ; 76 return ret ; 77 } 78 79 int main () 80 { 81 //freopen("in.txt","r",stdin) ; 82 int n , m ; 83 scanf("%d %d" , &n , &m) ; 84 85 build(1 , n , 1) ; 86 while(m--) 87 { 88 char op[10] ; 89 int a , b , c ; 90 scanf("%s" , op) ; 91 if(op[0] == 'Q') 92 { 93 scanf("%d %d" , &a , &b) ; 94 cout<<query(a , b , 1 , n , 1)<<endl ; 95 } 96 else 97 { 98 scanf("%d %d %d" , &a , &b , &c) ; 99 updata(a , b , c , 1 , n , 1) ; 100 } 101 } 102 103 104 105 return 0 ; 106 }