zoukankan      html  css  js  c++  java
  • 协方差的意义

    协方差的意义

    转载于:http://bbs.mathchina.com/cgi-bin/topic.cgi?forum=5&topic=14444(感谢原作者) 


    在概率论中,两个随机变量 X 与 Y 之间相互关系,大致有下列3种情况:


    当 X, Y 的联合分布像上图那样时,我们能够看出,大致上有: X 越大  Y 也越大, X 越小  Y 也越小,这样的情况,我们称为“正相关”。


    当X, Y 的联合分布像上图那样时,我们能够看出,大致上有:X 越大Y 反而越小,X 越小 Y 反而越大,这样的情况,我们称为“负相关”。

    当X, Y  的联合分布像上图那样时,我们能够看出:既不是X  越大Y 也越大,也不是 X 越大 Y 反而越小,这样的情况我们称为“不相关”。

    如何将这3种相关情况,用一个简单的数字表达出来呢?

    在图中的区域(1)中,有 X>EX ,Y-EY>0 ,所以(X-EX)(Y-EY)>0;

    在图中的区域(2)中,有 X<EX ,Y-EY>0 ,所以(X-EX)(Y-EY)<0;

    在图中的区域(3)中,有 X<EX ,Y-EY<0 ,所以(X-EX)(Y-EY)>0;

    在图中的区域(4)中,有 X>EX ,Y-EY<0 ,所以(X-EX)(Y-EY)<0

    正相关时,它们的分布大部分在区域(1)和(3)中,小部分在区域(2)和(4)中,所以平均来说,有E(X-EX)(Y-EY)>0 

     X Y负相关时,它们的分布大部分在区域(2)和(4)中,小部分在区域(1)和(3)中,所以平均来说,有(X-EX)(Y-EY)<0 

     X Y不相关时,它们在区域(1)和(3)中的分布,与在区域(2)和(4)中的分布差点儿一样多,所以平均来说,有(X-EX)(Y-EY)=0 

    所以,我们能够定义一个表示X, Y 相互关系的数字特征,也就是协方差
    cov(X, Y) = E(X-EX)(Y-EY)

     cov(X, Y)>0时,表明 XY 正相关

     cov(X, Y)<0时,表明XY负相关

    cov(X, Y)=0时,表明XY不相关

    这就是协方差的意义。


  • 相关阅读:
    .NET实现Excel文件的读写 未测试
    权限管理设计
    struts1中配置应用
    POJ 2139 Six Degrees of Cowvin Bacon(floyd)
    POJ 1751 Highways
    POJ 1698 Alice's Chance
    POJ 1018 Communication System
    POJ 1050 To the Max
    POJ 1002 4873279
    POJ 3084 Panic Room
  • 原文地址:https://www.cnblogs.com/mengfanrong/p/3781710.html
Copyright © 2011-2022 走看看