zoukankan      html  css  js  c++  java
  • codechef Chef and The Right Triangles 题解

    Chef and The Right Triangles

    The Chef is given a list of N triangles. Each triangle is identfied by the coordinates of its three corners in the 2-D cartesian plane. His job is to figure out how many
    of the given triangles are right triangles
    . A right triangle is a triangle in which one angle is a 90 degree angle. The vertices
    of the triangles have integer coordinates and all the triangles given are valid( three points aren't colinear ).

     

    Input

    The first line of the input contains an integer N denoting the number of triangles. Each of the following N
    lines contain six space separated integers x1 y1 x2 y2 x3 y3 where (x1, y1),
    (x2, y2) and (x3, y3) are the vertices of a triangle.

     

    Output

    Output one integer, the number of right triangles among the given triangles.

     

    Constraints

    • 1 ≤ N ≤ 100000 (105)
    • 0 ≤ x1, y1, x2, y2, x3, y3 ≤ 20

     

    Example

    Input:
    5
    0 5 19 5 0 0
    17 19 12 16 19 0
    5 14 6 13 8 7
    0 4 0 14 3 14
    0 2 0 14 9 2
    
    Output:
    3

    推断是否是直角三角形,两种方法:

    1 a*a + b*b = c*c

    2 A dot B == 0  //dot是向量的点乘


    重载操作符:

    1 定义一个Point 

    2 定义Point的操作: 1) 减法  2) *乘号代表dot运算


    #pragma once
    #include <stdio.h>
    
    class ChefandTheRightTriangles
    {
    	struct Point
    	{
    		int x, y;
    		explicit Point(int a = 0, int b = 0): x(a), y(b) {}
    		Point operator-(const Point &p) const
    		{
    			return Point(x - p.x, y - p.y);
    		}
    		int operator*(const Point &p) const
    		{
    			return x * p.x + y * p.y;
    		}
    	};
    
    	int getInt()
    	{
    		char c = getchar();
    		while (c < '0' || '9' < c)
    		{
    			c = getchar();
    		}
    		int num = 0;
    		while ('0' <= c && c <= '9')
    		{
    			num = (num<<3) + (num<<1) + (c - '0');
    			c = getchar();
    		}
    		return num;
    	}
    public:
    	ChefandTheRightTriangles()
    	{
    		int N = 0, C = 0;
    		N = getInt();
    		Point p1, p2, p3, v1, v2, v3;
    		while (N--)
    		{
    			p1.x = getInt(), p1.y = getInt();
    			p2.x = getInt(), p2.y = getInt();
    			p3.x = getInt(), p3.y = getInt();
    			v1 = p1 - p2, v2 = p2 - p3, v3 = p3 - p1;
    			if (v1 * v2 == 0 || v2 * v3 == 0 || v3 * v1 == 0)
    				C++;
    		}
    		printf("%d", C);
    	}
    };
    
    int chefandTheRightTriangles()
    {
    	ChefandTheRightTriangles();
    	return 0;
    }



  • 相关阅读:
    kubectl 命令详解
    codeforce344 C report
    poj3041 建图+最小顶点覆盖(最大匹配数)
    poj1637 混合欧拉回路的判定
    poj1149 最大流好题 难在建图 好题
    targan 算法模板
    poj2186 强连通分量 targan算法的应用
    poj2723 2分 + 2-sat
    poj3061 尺取法
    poj3207 2-sat基础题
  • 原文地址:https://www.cnblogs.com/mengfanrong/p/3840193.html
Copyright © 2011-2022 走看看