Wow! Such Sequence!
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 1265 Accepted Submission(s): 387
Problem Description
Recently, Doge got a funny birthday present from his new friend, Protein Tiger from St. Beeze College. No, not cactuses. It's a mysterious blackbox.
After some research, Doge found that the box is maintaining a sequence an of n numbers internally, initially all numbers are zero, and there are THREE "operations":
1.Add d to the k-th number of the sequence.
2.Query the sum of ai where l ≤ i ≤ r.
3.Change ai to the nearest Fibonacci number, where l ≤ i ≤ r.
4.Play sound "Chee-rio!", a bit useless.
Let F0 = 1,F1 = 1,Fibonacci number Fn is defined as Fn = Fn - 1 + Fn - 2 for n ≥ 2.
Nearest Fibonacci number of number x means the smallest Fn where |Fn - x| is also smallest.
Doge doesn't believe the machine could respond each request in less than 10ms. Help Doge figure out the reason.
After some research, Doge found that the box is maintaining a sequence an of n numbers internally, initially all numbers are zero, and there are THREE "operations":
1.Add d to the k-th number of the sequence.
2.Query the sum of ai where l ≤ i ≤ r.
3.Change ai to the nearest Fibonacci number, where l ≤ i ≤ r.
4.Play sound "Chee-rio!", a bit useless.
Let F0 = 1,F1 = 1,Fibonacci number Fn is defined as Fn = Fn - 1 + Fn - 2 for n ≥ 2.
Nearest Fibonacci number of number x means the smallest Fn where |Fn - x| is also smallest.
Doge doesn't believe the machine could respond each request in less than 10ms. Help Doge figure out the reason.
Input
Input contains several test cases, please process till EOF.
For each test case, there will be one line containing two integers n, m.
Next m lines, each line indicates a query:
1 k d - "add"
2 l r - "query sum"
3 l r - "change to nearest Fibonacci"
1 ≤ n ≤ 100000, 1 ≤ m ≤ 100000, |d| < 231, all queries will be valid.
For each test case, there will be one line containing two integers n, m.
Next m lines, each line indicates a query:
1 k d - "add"
2 l r - "query sum"
3 l r - "change to nearest Fibonacci"
1 ≤ n ≤ 100000, 1 ≤ m ≤ 100000, |d| < 231, all queries will be valid.
Output
For each Type 2 ("query sum") operation, output one line containing an integer represent the answer of this query.
Sample Input
1 1 2 1 1 5 4 1 1 7 1 3 17 3 2 4 2 1 5
Sample Output
0 22
Author
Fudan University
Source
Recommend
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long int LL; #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 const int maxn=110000; LL sum[maxn<<2],fibsum[maxn<<2],fib[100]; bool cov[maxn<<2]; void GET_FIB() { fib[0]=fib[1]=1LL; for(int i=2;i<100;i++) fib[i]=fib[i-1]+fib[i-2]; } LL CHANGE(LL x) { int mark=-1;LL mx=99999999999LL; for(int i=0;i<100;i++) { if(abs(x-fib[i])<mx) { mx=abs(x-fib[i]); mark=i; } } return fib[mark]; } void push_up(int rt) { sum[rt]=sum[rt<<1]+sum[rt<<1|1]; fibsum[rt]=fibsum[rt<<1]+fibsum[rt<<1|1]; } void push_down(int l,int r,int rt) { if(l==r) return ; if(cov[rt]) { sum[rt<<1]=fibsum[rt<<1]; sum[rt<<1|1]=fibsum[rt<<1|1]; cov[rt<<1]=cov[rt<<1|1]=cov[rt]; cov[rt]=0; } } void build(int l,int r,int rt) { sum[rt]=0,fibsum[rt]=1,cov[rt]=0; if(l==r) return ; int m=(l+r)/2; build(lson); build(rson); push_up(rt); } void ADD(int Kth,LL d,int l,int r,int rt) { push_down(l,r,rt); if(l==r) { sum[rt]+=d; fibsum[rt]=CHANGE(sum[rt]); return ; } int m=(l+r)/2; if(Kth<=m) ADD(Kth,d,lson); else ADD(Kth,d,rson); push_up(rt); } LL query(int L,int R,int l,int r,int rt) { if(L<=l&&r<=R) { return sum[rt]; } push_down(l,r,rt); int m=(l+r)/2; LL ret=0; if(L<=m) ret+=query(L,R,lson); if(R>m) ret+=query(L,R,rson); return ret; } void C_F(int L,int R,int l,int r,int rt) { if(L<=l&&r<=R) { cov[rt]=1; sum[rt]=fibsum[rt]; return ; } push_down(l,r,rt); int m=(l+r)/2; if(L<=m) C_F(L,R,lson); if(R>m) C_F(L,R,rson); push_up(rt); } int main() { int n,m; GET_FIB(); while(scanf("%d%d",&n,&m)!=EOF) { build(1,n,1); LL a,b,c; while(m--) { scanf("%I64d%I64d%I64d",&a,&b,&c); if(a==1) ADD(b,c,1,n,1); else if(a==2) printf("%I64d ",query(b,c,1,n,1)); else if(a==3) C_F(b,c,1,n,1); } } return 0; }