zoukankan      html  css  js  c++  java
  • Codeforces Round #256 (Div. 2) D. Multiplication Table

    Bizon the Champion isn't just charming, he also is very smart.

    While some of us were learning the multiplication table, Bizon the Champion had fun in his own manner. Bizon the Champion painted an n × m multiplication table, where the element on the intersection of the i-th row and j-th column equals i·j (the rows and columns of the table are numbered starting from 1). Then he was asked: what number in the table is the k-th largest number? Bizon the Champion always answered correctly and immediately. Can you repeat his success?

    Consider the given multiplication table. If you write out all n·m numbers from the table in the non-decreasing order, then the k-th number you write out is called the k-th largest number.

    Input

    The single line contains integers nm and k (1 ≤ n, m ≤ 5·105; 1 ≤ k ≤ n·m).

    Output

    Print the k-th largest number in a n × m multiplication table.

    Sample test(s)
    input
    2 2 2
    
    output
    2
    
    input
    2 3 4
    
    output
    3
    
    input
    1 10 5
    
    output
    5
    
    Note

    2 × 3 multiplication table looks like this:

    1 2 3
    2 4 6
    题意:让你在一个n*m的乘法矩阵中,找到第k大的数。

    思路:二分查找,统计每一行的结果

    #include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <algorithm>
    #include <cmath>
    typedef long long ll;
    using namespace std;
    
    ll n, m, k;
    
    int check(ll x) {
    	ll res = 0;
    	for (int i = 1; i <= n; i++) {
    		ll tmp = min(i*m, x);
    		res += tmp / i;
    	}
    	return res < k;
    }
    
    ll search(ll l, ll r) {
    	while (l < r) {
    		ll mid = (l + r) / 2;
    		if (check(mid))
    			l = mid + 1;
    		else r = mid;
    	}
    	return r;
    }
    
    int main() {
    	cin >> n >> m >> k;
    	ll Right = n * m, Left = 1;
    	ll ans = search(Left, Right);
    	cout << ans << endl;
    	return 0;
    }


    版权声明:本文博主原创文章。博客,未经同意不得转载。

  • 相关阅读:
    无名信号量在多线程间的同步
    ftok函数例子
    strerror和perror函数详解
    lockf函数的使用
    背包问题-2动态规划【正解】
    递归思想即背包问题
    生产者消费者问题(基于线程和无名信号量)
    eclipse 安装python后pydev不出现
    Eclipse+pydev解决中文显示和注释问题的方法大全
    MyEclipse10配置PyDev进行Python开发
  • 原文地址:https://www.cnblogs.com/mengfanrong/p/4806960.html
Copyright © 2011-2022 走看看