下面是四种用java语言编程实现的求最大公约数的方法:
package gcd; import java.util.ArrayList; import java.util.List; public class gcd { public static void main(String[] args) { long startTime; long endTime; long durationTime; int[] testArray1 = new int[]{784, 988, 460, 732, 548, 998, 672, 1024, 888, 512}; int[] testArray2 = new int[]{1024, 82, 92, 128, 58, 2014, 512, 88, 582, 788}; for (int i = 0; i < 10; i++) { startTime = System.nanoTime(); System.out.println("欧几里得方法:" + Euclid(testArray1[i],testArray2[i])); endTime = System.nanoTime(); durationTime = endTime - startTime; System.out.println("欧几里得算法耗时:" + durationTime + " "); startTime = System.nanoTime(); System.out.println("连续整数检測法:" + consecutiveIntegersTest(testArray1[i], testArray2[i])); endTime = System.nanoTime(); durationTime = endTime - startTime; System.out.println("连续整数检測算法耗时:" + durationTime + " "); startTime = System.nanoTime(); System.out.println("辗转相减法:" + consecutiveSubstract(testArray1[i], testArray2[i])); endTime = System.nanoTime(); durationTime = endTime - startTime; System.out.println("辗转相减算法耗时:" + durationTime + " "); startTime = System.nanoTime(); System.out.println("分解质因数法:" + primeFactors(testArray1[i], testArray2[i])); endTime = System.nanoTime(); durationTime = endTime - startTime; System.out.println("分解质因数算法耗时:" + durationTime); } } /** * 欧几里得算法求最大公约数 * @param no1 * @param no2 * @return */ public static int Euclid(int no1, int no2) { int remainder; remainder = no1%no2; while(remainder != 0) { no1 = no2; no2 = remainder; remainder = no1%no2; } return no2; } /** * 连续整数检測法 * @param m * @param n * @return */ public static int consecutiveIntegersTest(int m, int n) { int t; if (m > n) t = n; else t = m; while(true) { if (m%t == 0 && n%t == 0) break; else t = t - 1; } return t; } /** * 辗转相减法 * @param num1 * @param num2 * @return */ public static int consecutiveSubstract(int num1, int num2) { while(true) { if (num1 > num2) num1 -= num2; else if (num1 < num2) num2 -= num1; else return num1; } } /** * 分解质因数法 * @param primeNum1 * @param primeNum2 * @return */ public static int primeFactors(int primeNum1, int primeNum2) { int prime_gcd = 1; int compareListSize; int temp1, temp2; int pn1 = primeNum1, pn2 = primeNum2; List<Integer> num1List = new ArrayList<Integer>(); List<Integer> num2List = new ArrayList<Integer>(); List<Integer> sameNumList = new ArrayList<Integer>(); //求出质因数 for (int i = 2; i < pn1/2;) { //注意此处用的是pn1,而不是primeNum1,primeNum1的值在以下的运行过程会不断减小 if (primeNum1%i == 0) { //求余数,假设能被整除,返回true temp1 = primeNum1 / i; //求商 primeNum1 = temp1; //将商赋值给primeNum1。又一次推断余数是否为0 num1List.add(i); //将质因数放入num1List } else if (primeNum1%i != 0) { i = i + 1; //假设余数不等于0。除数i加1,继续求余数 } } for (int i = 2; i < pn2/2;) { if (primeNum2%i == 0) { temp2 = primeNum2 / i; primeNum2 = temp2; num2List.add(i); } else if (primeNum2%i != 0) { i = i + 1; } } int num1ListSize = num1List.size(); int num2ListSize = num2List.size(); if (num1ListSize < num2ListSize) { for (int i = 0; i < num1List.size();) { if (num2List.contains(num1List.get(i))) { prime_gcd *= num1List.get(i); num2List.remove(num2List.indexOf(num1List.get(i))); num1List.remove(i); if (num1List.size() == 0 || num2List.size() == 0) break; } else { i = i + 1; } } } else { for (int i = 0; i < num2List.size(); ) { if (num1List.contains(num2List.get(i))) { prime_gcd *= num2List.get(i); num1List.remove(num1List.indexOf(num2List.get(i))); num2List.remove(i); if (num1List.size() == 0 || num2List.size() == 0) break; } else { i = i + 1; } } } return prime_gcd; } }