zoukankan      html  css  js  c++  java
  • POJ--1679--The Unique MST【推断MST是否唯一】

    链接:http://poj.org/problem?

    id=1679

    题意:告诉你有n个点,m条边,以及m条边的信息(起点、终点、权值)。推断最小生成树是否唯一


    之前是用另外一种方法做的。复杂度最高可达O(n^3),后来用次小生成树又做了一次。复杂度O(n^2+m)。

    先说次小生成树的方法。

    次小生成树:求出最小生成树,把用到的边做标记,此时加入额外的边进去必定形成环,删除环中第二大的边(即这个环里在生成树上的最大边),加上额外边的权值,枚举每一个额外边,取最小值,就是次小生成树的值。用同样的方法能够求第K小生成树以及推断第K小生成树是否唯一。

    #include<cstring>
    #include<string>
    #include<fstream>
    #include<iostream>
    #include<iomanip>
    #include<cstdio>
    #include<cctype>
    #include<algorithm>
    #include<queue>
    #include<map>
    #include<set>
    #include<vector>
    #include<stack>
    #include<ctime>
    #include<cstdlib>
    #include<functional>
    #include<cmath>
    using namespace std;
    #define PI acos(-1.0)
    #define MAXN 50100
    #define eps 1e-7
    #define INF 0x7FFFFFFF
    #define LLINF 0x7FFFFFFFFFFFFFFF
    #define seed 131
    #define MOD 1000000007
    #define ll long long
    #define ull unsigned ll
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    
    struct node{
        int u,v,w;
        int used;
    }edge1[10010];
    struct Edge{
        int u,v,w,next;
    }edge[20010];
    struct NODE{
        int u,maxm;
    };
    int head[110],vis[110],father[110];
    int maxm[110][110];
    int n,m,cnt;
    void add_edge(int a,int b,int c){
        edge[cnt].u = a;
        edge[cnt].v = b;
        edge[cnt].w = c;
        edge[cnt].next = head[a];
        head[a] = cnt++;
    }
    int Find(int x){
        int t = x;
        while(t != father[t])
            t = father[t];
        int k = x;
        while(k != t){
            int temp = father[k];
            father[k] = t;
            k = temp;
        }
        return t;
    }
    int kruskal(){
        int i,j;
        int num = 0, sum = 0;
        for(i = 0; i <= n; i++) father[i] = i;
        for(i = 0; i < m; i++){
            int xx = Find(edge1[i].u);
            int yy = Find(edge1[i].v);
            if(xx != yy){
                add_edge(edge1[i].u, edge1[i].v, edge1[i].w);
                add_edge(edge1[i].v, edge1[i].u, edge1[i].w);
                father[xx] = yy;
                sum += edge1[i].w;
                edge1[i].used = 1;
                num++;
                if(num >= n - 1)    break;
            }
        }
        return sum;
    }
    void bfs(int src){
        int i,j;
        memset(vis, 0, sizeof(vis));
        queue<NODE>q;
        NODE t1,t2;
        t1.u = src;
        t1.maxm = 0;
        q.push(t1);
        vis[src] = 1;
        while(!q.empty()){
            t1 = q.front();
            q.pop();
            for(i = head[t1.u]; i != -1; i = edge[i].next){
                t2.u = edge[i].v;
                t2.maxm = edge[i].w;
                if(!vis[t2.u]){
                    vis[t2.u] = 1;
                    if(t1.maxm > t2.maxm)   t2.maxm = t1.maxm;
                    maxm[src][t2.u] = t2.maxm;
                    q.push(t2);
                }
            }
        }
    }
    int main(){
        int t,i,j;
        int a,b,c;
        scanf("%d", &t);
        while(t--){
            scanf("%d%d", &n, &m);
            for(i = 0; i < m; i++){
                scanf("%d%d%d", &edge1[i].u, &edge1[i].v, &edge1[i].w);
                edge1[i].used = 0;
            }
            memset(head,-1,sizeof(head));
            cnt = 0;
            int ans1 = kruskal();
            for(i = 1; i <= n; i++) bfs(i);
            int ans2 = INF;
            for(i = 0; i < m; i++){
                if(!edge1[i].used){
                    int temp = ans1 - maxm[edge1[i].u][edge1[i].v] + edge1[i].w;
                    if(temp < ans2) ans2 = temp;
                }
            }
            if(ans1!=ans2)  printf("%d
    ", ans1);
            else    puts("Not Unique!");
        }
        return 0;
    }
    


    删边枚举法:对于每条边假设有和他相等权值的边。则做一个标记,然后进行一遍kruskal或prim找出最小生成树权值。然后对于每一个使用过而且有相等边标记的边,把它从图中删去,再进行一遍kruskal或prim,假设此时最小生成树权值和第一次一样,则说明最小生成树不唯一。否则最小生成树唯一。


    #include<cstring>
    #include<string>
    #include<fstream>
    #include<iostream>
    #include<iomanip>
    #include<cstdio>
    #include<cctype>
    #include<algorithm>
    #include<queue>
    #include<map>
    #include<set>
    #include<vector>
    #include<stack>
    #include<ctime>
    #include<cstdlib>
    #include<functional>
    #include<cmath>
    using namespace std;
    #define PI acos(-1.0)
    #define MAXN 110000
    #define eps 1e-7
    #define INF 0x7FFFFFFF
    #define seed 131
    #define ll long long
    #define ull unsigned ll
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    
    struct node{
        int u,v,dis;
        int used,equa,del;
    }edge[MAXN];
    int father[105],vis[105];
    int n,m,flag,ans;
    bool cmp(node x,node y){
        return x.dis<y.dis;
    }
    int find(int x){
        int t = x;
        while(father[t]!=t)
            t = father[t];
        int k = x;
        while(k!=t){
            int temp = father[k];
            father[k] = t;
            k = temp;
        }
        return t;
    }
    int kruskal(){
        int i,j=0;
        int sum = 0;
        for(i=1;i<=n;i++)   father[i] = i;
        for(i=0;i<m;i++){
            if(edge[i].del)     continue;
            int a = find(edge[i].u);
            int b = find(edge[i].v);
            if(a!=b){
                father[a] = b;
                sum += edge[i].dis;
                j++;
                if(flag)    edge[i].used = 1;
                if(j>=n-1)  break;
            }
        }
        return sum;
    }
    int main(){
        int t,i,j;
        scanf("%d",&t);
        while(t--){
            flag = 1;
            scanf("%d%d",&n,&m);
            for(i=0;i<m;i++){
                scanf("%d%d%d",&edge[i].u,&edge[i].v,&edge[i].dis);
                edge[i].used = edge[i].equa = edge[i].del = 0;
            }
            for(i=0;i<m;i++){
                for(j=0;j<m;j++){
                    if(i==j)    continue;
                    if(edge[i].dis == edge[j].dis)  edge[i].equa = 1;
                }
            }
            sort(edge,edge+m,cmp);
            int ans1 = kruskal();
            flag = 0;
            for(i=0;i<m;i++){
                if(edge[i].used&&edge[i].equa){
                    edge[i].del = 1;
                    int ans2 = kruskal();
                    if(ans2==ans1){
                        printf("Not Unique!
    ");
                        break;
                    }
                }
            }
            if(i>=m)    printf("%d
    ",ans1);
        }
        return 0;
    }
    


  • 相关阅读:
    UVA 12546 LCM Pair Sum
    两两间的距离都是整数的点集
    Codeforces 11.27
    Codeforces 11.27 B
    UVA 105
    打印自身的程序
    Interval DP
    Tree DP
    参加第五次全国工程建设行业信息化建设高峰论坛 (个人的一点感想)
    基础资料分类及清单版本管理
  • 原文地址:https://www.cnblogs.com/mengfanrong/p/5070765.html
Copyright © 2011-2022 走看看