zoukankan      html  css  js  c++  java
  • Spark大师之路:广播变量(Broadcast)源代码分析

    概述

    近期工作上忙死了……广播变量这一块事实上早就看过了,一直没有贴出来。

    本文基于Spark 1.0源代码分析,主要探讨广播变量的初始化、创建、读取以及清除。

    类关系

    BroadcastManager类中包括一个BroadcastFactory对象的引用。大部分操作通过调用BroadcastFactory中的方法来实现。

    BroadcastFactory是一个Trait,有两个直接子类TorrentBroadcastFactory、HttpBroadcastFactory。这两个子类实现了对HttpBroadcast、TorrentBroadcast的封装。而后面两个又同一时候集成了Broadcast抽象类。

    图……就不画了

    BroadcastManager的初始化

    SparkContext初始化时会创建SparkEnv对象env,这个过程中会调用BroadcastManager的构造方法返回一个对象作为env的成员变量存在:

    val broadcastManager = new BroadcastManager(isDriver, conf, securityManager)


    构造BroadcastManager对象时会调用initialize方法,主要依据配置初始化broadcastFactory成员变量。并调用其initialize方法。

     val broadcastFactoryClass =
              conf.get("spark.broadcast.factory", "org.apache.spark.broadcast.HttpBroadcastFactory")
    
            broadcastFactory =
              Class.forName(broadcastFactoryClass).newInstance.asInstanceOf[BroadcastFactory]
    
            // Initialize appropriate BroadcastFactory and BroadcastObject
            broadcastFactory.initialize(isDriver, conf, securityManager)


     

    两个工厂类的initialize方法都是对其对应实体类的initialize方法的调用。以下分开两个类来看。

    HttpBroadcast的initialize方法

      def initialize(isDriver: Boolean, conf: SparkConf, securityMgr: SecurityManager) {
        synchronized {
          if (!initialized) {
            bufferSize = conf.getInt("spark.buffer.size", 65536)
            compress = conf.getBoolean("spark.broadcast.compress", true)
            securityManager = securityMgr
            if (isDriver) {
              createServer(conf)
              conf.set("spark.httpBroadcast.uri",  serverUri)
            }
            serverUri = conf.get("spark.httpBroadcast.uri")
            cleaner = new MetadataCleaner(MetadataCleanerType.HTTP_BROADCAST, cleanup, conf)
            compressionCodec = CompressionCodec.createCodec(conf)
            initialized = true
          }
        }
      }


     

    除了一些变量的初始化外,主要做两件事情。一是createServer(仅仅有在Driver端会做),其次是创建一个MetadataCleaner对象。

    createServer

      private def createServer(conf: SparkConf) {
        broadcastDir = Utils.createTempDir(Utils.getLocalDir(conf))
        server = new HttpServer(broadcastDir, securityManager)
        server.start()
        serverUri = server.uri
        logInfo("Broadcast server started at " + serverUri)
      }


     

    首先创建一个存放广播变量的文件夹,默认是

    conf.get("spark.local.dir",  System.getProperty("java.io.tmpdir")).split(',')(0)


     

    然后初始化一个HttpServer对象并启动(封装了jetty),启动过程中包含载入资源文件,起port和线程用来监控请求等。这部分的细节在org.apache.spark.HttpServer类中。此处不做展开。

    创建MetadataCleaner对象

    一个MetadataCleaner对象包装了一个定时计划Timer,每隔一段时间运行一个回调函数,此处传入的回调函数为cleanup:

      private def cleanup(cleanupTime: Long) {
        val iterator = files.internalMap.entrySet().iterator()
        while(iterator.hasNext) {
          val entry = iterator.next()
          val (file, time) = (entry.getKey, entry.getValue)
          if (time < cleanupTime) {
            iterator.remove()
            deleteBroadcastFile(file)
          }
        }
      }


     

    即清楚存在吵过一定时长的broadcast文件。在时长未设定(默认情况)时。不清除:

     if (delaySeconds > 0) {
        logDebug(
          "Starting metadata cleaner for " + name + " with delay of " + delaySeconds + " seconds " +
          "and period of " + periodSeconds + " secs")
        timer.schedule(task, periodSeconds * 1000, periodSeconds * 1000)
      }


     

    TorrentBroadcast的initialize方法

      def initialize(_isDriver: Boolean, conf: SparkConf) {
        TorrentBroadcast.conf = conf // TODO: we might have to fix it in tests
        synchronized {
          if (!initialized) {
            initialized = true
          }
        }
      }


     

    Torrent在此处没做什么,这也能够看出和Http的差别,Torrent的处理方式就是p2p。去中心化。

    而Http是中心化服务,须要启动服务来接受请求。

    创建broadcast变量

    调用SparkContext中的 def broadcast[T: ClassTag](value: T): Broadcast[T]方法来初始化一个广播变量,实现例如以下:

    def broadcast[T: ClassTag](value: T): Broadcast[T] = {
        val bc = env.broadcastManager.newBroadcast[T](value, isLocal)
        cleaner.foreach(_.registerBroadcastForCleanup(bc))
        bc
      }

    即调用broadcastManager的newBroadcast方法:

      def newBroadcast[T: ClassTag](value_ : T, isLocal: Boolean) = {
        broadcastFactory.newBroadcast[T](value_, isLocal, nextBroadcastId.getAndIncrement())
      }
    

    再调用工厂类的newBroadcast方法,此处返回的是一个Broadcast对象。

    HttpBroadcastFactory的newBroadcast

      def newBroadcast[T: ClassTag](value_ : T, isLocal: Boolean, id: Long) =
        new HttpBroadcast[T](value_, isLocal, id)
    

    即创建一个新的HttpBroadcast对象并返回。

    构造对象时主要做两件事情:

     HttpBroadcast.synchronized {
        SparkEnv.get.blockManager.putSingle(
          blockId, value_, StorageLevel.MEMORY_AND_DISK, tellMaster = false)
      }
    
      if (!isLocal) {
        HttpBroadcast.write(id, value_)
      }

    1.将变量id和值放入blockManager。但并不通知master

    2.调用伴生对象的write方法

    def write(id: Long, value: Any) {
        val file = getFile(id)
        val out: OutputStream = {
          if (compress) {
            compressionCodec.compressedOutputStream(new FileOutputStream(file))
          } else {
            new BufferedOutputStream(new FileOutputStream(file), bufferSize)
          }
        }
        val ser = SparkEnv.get.serializer.newInstance()
        val serOut = ser.serializeStream(out)
        serOut.writeObject(value)
        serOut.close()
        files += file
      }


    write方法将对象值依照指定的压缩、序列化写入指定的文件。

    这个文件所在的文件夹即是HttpServer的资源文件夹。文件名称和id的相应关系为:

    case class BroadcastBlockId(broadcastId: Long, field: String = "") extends BlockId {
      def name = "broadcast_" + broadcastId + (if (field == "") "" else "_" + field)
    }


     

    TorrentBroadcastFactory的newBroadcast方法

      def newBroadcast[T: ClassTag](value_ : T, isLocal: Boolean, id: Long) =
        new TorrentBroadcast[T](value_, isLocal, id)


    相同是创建一个TorrentBroadcast对象,并返回。

      TorrentBroadcast.synchronized {
        SparkEnv.get.blockManager.putSingle(
          broadcastId, value_, StorageLevel.MEMORY_AND_DISK, tellMaster = false)
      }
    
     
      if (!isLocal) {
        sendBroadcast()
      }

    做两件事情,第一步和Http一样。第二步:

      def sendBroadcast() {
        val tInfo = TorrentBroadcast.blockifyObject(value_)
        totalBlocks = tInfo.totalBlocks
        totalBytes = tInfo.totalBytes
        hasBlocks = tInfo.totalBlocks
    
        // Store meta-info
        val metaId = BroadcastBlockId(id, "meta")
        val metaInfo = TorrentInfo(null, totalBlocks, totalBytes)
        TorrentBroadcast.synchronized {
          SparkEnv.get.blockManager.putSingle(
            metaId, metaInfo, StorageLevel.MEMORY_AND_DISK, tellMaster = true)
        }
    
        // Store individual pieces
        for (i <- 0 until totalBlocks) {
          val pieceId = BroadcastBlockId(id, "piece" + i)
          TorrentBroadcast.synchronized {
            SparkEnv.get.blockManager.putSingle(
              pieceId, tInfo.arrayOfBlocks(i), StorageLevel.MEMORY_AND_DISK, tellMaster = true)
          }
        }
      }


    能够看出。先将元数据信息缓存到blockManager,再将块信息缓存过去。

    开头能够看到有一个分块动作,是调用伴生对象的blockifyObject方法:

    def blockifyObject[T](obj: T): TorrentInfo


    此方法将对象obj分块(默认块大小为4M),返回一个TorrentInfo对象。第一个參数为一个TorrentBlock对象(包括blockID和block字节数组)、块数量以及obj的字节流总长度。

    元数据信息中的blockId为广播变量id+后缀,value为总块数和总字节数。

    数据信息是分块缓存。每块的id为广播变量id加后缀及块变好,数据位一个TorrentBlock对象

    读取广播变量的值

    通过调用bc.value来取得广播变量的值,其主要实如今反序列化方法readObject中

    HttpBroadcast的反序列化

     HttpBroadcast.synchronized {
          SparkEnv.get.blockManager.getSingle(blockId) match {
            case Some(x) => value_ = x.asInstanceOf[T]
            case None => {
              logInfo("Started reading broadcast variable " + id)
              val start = System.nanoTime
              value_ = HttpBroadcast.read[T](id)
              /*
               * We cache broadcast data in the BlockManager so that subsequent tasks using it
               * do not need to re-fetch. This data is only used locally and no other node
               * needs to fetch this block, so we don't notify the master.
               */
              SparkEnv.get.blockManager.putSingle(
                blockId, value_, StorageLevel.MEMORY_AND_DISK, tellMaster = false)
              val time = (System.nanoTime - start) / 1e9
              logInfo("Reading broadcast variable " + id + " took " + time + " s")
            }
          }
        }


    首先查看blockManager中是否已有,如有则直接取值。否则调用伴生对象的read方法进行读取:

    def read[T: ClassTag](id: Long): T = {
        logDebug("broadcast read server: " +  serverUri + " id: broadcast-" + id)
        val url = serverUri + "/" + BroadcastBlockId(id).name
    
        var uc: URLConnection = null
        if (securityManager.isAuthenticationEnabled()) {
          logDebug("broadcast security enabled")
          val newuri = Utils.constructURIForAuthentication(new URI(url), securityManager)
          uc = newuri.toURL.openConnection()
          uc.setAllowUserInteraction(false)
        } else {
          logDebug("broadcast not using security")
          uc = new URL(url).openConnection()
        }
    
        val in = {
          uc.setReadTimeout(httpReadTimeout)
          val inputStream = uc.getInputStream
          if (compress) {
            compressionCodec.compressedInputStream(inputStream)
          } else {
            new BufferedInputStream(inputStream, bufferSize)
          }
        }
        val ser = SparkEnv.get.serializer.newInstance()
        val serIn = ser.deserializeStream(in)
        val obj = serIn.readObject[T]()
        serIn.close()
        obj
      }


    使用serverUri和block id相应的文件名称直接开启一个HttpConnection将中心服务器上相应的数据取过来,使用配置的压缩和序列化机制进行解压和反序列化。

    这里能够看到,全部须要用到广播变量值的executor都须要去driver上pull广播变量的内容。

    取到值后,缓存到blockManager中,以便下次使用。

    TorrentBroadcast的反序列化

    private def readObject(in: ObjectInputStream) {
        in.defaultReadObject()
        TorrentBroadcast.synchronized {
          SparkEnv.get.blockManager.getSingle(broadcastId) match {
            case Some(x) =>
              value_ = x.asInstanceOf[T]
    
            case None =>
              val start = System.nanoTime
              logInfo("Started reading broadcast variable " + id)
    
              // Initialize @transient variables that will receive garbage values from the master.
              resetWorkerVariables()
    
              if (receiveBroadcast()) {
                value_ = TorrentBroadcast.unBlockifyObject[T](arrayOfBlocks, totalBytes, totalBlocks)
    
                /* Store the merged copy in cache so that the next worker doesn't need to rebuild it.
                 * This creates a trade-off between memory usage and latency. Storing copy doubles
                 * the memory footprint; not storing doubles deserialization cost. Also,
                 * this does not need to be reported to BlockManagerMaster since other executors
                 * does not need to access this block (they only need to fetch the chunks,
                 * which are reported).
                 */
                SparkEnv.get.blockManager.putSingle(
                  broadcastId, value_, StorageLevel.MEMORY_AND_DISK, tellMaster = false)
    
                // Remove arrayOfBlocks from memory once value_ is on local cache
                resetWorkerVariables()
              } else {
                logError("Reading broadcast variable " + id + " failed")
              }
    
              val time = (System.nanoTime - start) / 1e9
              logInfo("Reading broadcast variable " + id + " took " + time + " s")
          }
        }
      }


    和Http一样。都是先查看blockManager中是否已经缓存,若没有,则调用receiveBroadcast方法:

    def receiveBroadcast(): Boolean = {
        // Receive meta-info about the size of broadcast data,
        // the number of chunks it is divided into, etc.
        val metaId = BroadcastBlockId(id, "meta")
        var attemptId = 10
        while (attemptId > 0 && totalBlocks == -1) {
          TorrentBroadcast.synchronized {
            SparkEnv.get.blockManager.getSingle(metaId) match {
              case Some(x) =>
                val tInfo = x.asInstanceOf[TorrentInfo]
                totalBlocks = tInfo.totalBlocks
                totalBytes = tInfo.totalBytes
                arrayOfBlocks = new Array[TorrentBlock](totalBlocks)
                hasBlocks = 0
    
              case None =>
                Thread.sleep(500)
            }
          }
          attemptId -= 1
        }
        if (totalBlocks == -1) {
          return false
        }
    
        /*
         * Fetch actual chunks of data. Note that all these chunks are stored in
         * the BlockManager and reported to the master, so that other executors
         * can find out and pull the chunks from this executor.
         */
        val recvOrder = new Random().shuffle(Array.iterate(0, totalBlocks)(_ + 1).toList)
        for (pid <- recvOrder) {
          val pieceId = BroadcastBlockId(id, "piece" + pid)
          TorrentBroadcast.synchronized {
            SparkEnv.get.blockManager.getSingle(pieceId) match {
              case Some(x) =>
                arrayOfBlocks(pid) = x.asInstanceOf[TorrentBlock]
                hasBlocks += 1
                SparkEnv.get.blockManager.putSingle(
                  pieceId, arrayOfBlocks(pid), StorageLevel.MEMORY_AND_DISK, tellMaster = true)
    
              case None =>
                throw new SparkException("Failed to get " + pieceId + " of " + broadcastId)
            }
          }
        }
    
        hasBlocks == totalBlocks
      }


    和写数据一样,相同是分成两个部分,首先取元数据信息,再依据元数据信息读取实际的block信息。注意这里都是从blockManager中读取的,这里贴出blockManager.getSingle的分析。

    调用栈中最后到BlockManager.doGetRemote方法。中间有一条语句:

     val locations = Random.shuffle(master.getLocations(blockId))


    即将存有这个block的节点信息随机打乱,然后使用:

     val data = BlockManagerWorker.syncGetBlock(
            GetBlock(blockId), ConnectionManagerId(loc.host, loc.port))


    来获取。

    从这里能够看出,Torrent方法首先将广播变量数据分块,并存到BlockManager中;每一个节点须要读取广播变量时。是分块读取。对每一块都读取其位置信息。然后随机选一个存有此块数据的节点进行get。每一个节点读取后会将包括的快信息报告给BlockManagerMaster。这样本地节点也成为了这个广播网络中的一个peer。

    与Http方式形成鲜明对照,这是一个去中心化的网络。仅仅须要保持一个tracker就可以,这就是p2p的思想。

    广播变量的清除

    广播变量被创建时。紧接着有这样一句代码:

    cleaner.foreach(_.registerBroadcastForCleanup(bc))


    cleaner是一个ContextCleaner对象,会将刚刚创建的广播变量注冊到当中。调用栈为:

      def registerBroadcastForCleanup[T](broadcast: Broadcast[T]) {
        registerForCleanup(broadcast, CleanBroadcast(broadcast.id))
      }
      private def registerForCleanup(objectForCleanup: AnyRef, task: CleanupTask) {
        referenceBuffer += new CleanupTaskWeakReference(task, objectForCleanup, referenceQueue)
      }

    等出现广播变量被弱引用时(关于弱引用,能够參考:http://blog.csdn.net/lyfi01/article/details/6415726)。则会运行

    cleaner.foreach(_.start())


    start方法中会调用keepCleaning方法。会遍历注冊的清理任务(包含RDD、shuffle和broadcast),依次进行清理:

    private def keepCleaning(): Unit = Utils.logUncaughtExceptions {
        while (!stopped) {
          try {
            val reference = Option(referenceQueue.remove(ContextCleaner.REF_QUEUE_POLL_TIMEOUT))
              .map(_.asInstanceOf[CleanupTaskWeakReference])
            reference.map(_.task).foreach { task =>
              logDebug("Got cleaning task " + task)
              referenceBuffer -= reference.get
              task match {
                case CleanRDD(rddId) =>
                  doCleanupRDD(rddId, blocking = blockOnCleanupTasks)
                case CleanShuffle(shuffleId) =>
                  doCleanupShuffle(shuffleId, blocking = blockOnCleanupTasks)
                case CleanBroadcast(broadcastId) =>
                  doCleanupBroadcast(broadcastId, blocking = blockOnCleanupTasks)
              }
            }
          } catch {
            case e: Exception => logError("Error in cleaning thread", e)
          }
        }
      }


    doCleanupBroadcast调用下面语句:

    broadcastManager.unbroadcast(broadcastId, true, blocking)


    然后是:

      def unbroadcast(id: Long, removeFromDriver: Boolean, blocking: Boolean) {
        broadcastFactory.unbroadcast(id, removeFromDriver, blocking)
      }

    每一个工厂类调用其相应实体类的伴生对象的unbroadcast方法。


    HttpBroadcast中的变量清除

     def unpersist(id: Long, removeFromDriver: Boolean, blocking: Boolean) = synchronized {
        SparkEnv.get.blockManager.master.removeBroadcast(id, removeFromDriver, blocking)
        if (removeFromDriver) {
          val file = getFile(id)
          files.remove(file)
          deleteBroadcastFile(file)
        }
      }


    1是删除blockManager中的缓存。2是删除本地持久化的文件

    TorrentBroadcast中的变量清除

      def unpersist(id: Long, removeFromDriver: Boolean, blocking: Boolean) = synchronized {
        SparkEnv.get.blockManager.master.removeBroadcast(id, removeFromDriver, blocking)
      }


    小结

    Broadcast能够使用在executor端多次使用某个数据的场景(比方说字典),Http和Torrent两种方式相应传统的CS訪问方式和P2P訪问方式。当广播变量较大或者使用较频繁时。採用后者能够降低driver端的压力。

    BlockManager在此处充当P2P中的tracker角色。没有展开描写叙述,兴许会开专题讲这个部分。

    声明:本文为原创,禁止用于不论什么商业目的。转载请注明出处:http://blog.csdn.net/asongoficeandfire/article/details/37584643

  • 相关阅读:
    socket 第一课
    _getitem__ __setitem__ __delitem__ __len__
    单继承&多继承 注意点
    面对对象 类&对象
    异常检测
    模块导入
    序列化模块注意点 json&pickle
    re模块
    filter和map
    Maven入门
  • 原文地址:https://www.cnblogs.com/mengfanrong/p/5079665.html
Copyright © 2011-2022 走看看