zoukankan      html  css  js  c++  java
  • POJ1458 Common Subsequence 【最长公共子序列】

    Common Subsequence
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 37614   Accepted: 15058

    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0

    NYOJ同题

    #include <stdio.h>
    #include <string.h>
    #define maxn 1000
    
    char str1[maxn], str2[maxn];
    int dp[maxn][maxn];
    
    int max(int a, int b){ return a > b ?

    a : b; } int LCS() { int ans = 0; for(int i = 1, j; str1[i]; ++i){ for(j = 1; str2[j]; ++j){ if(str1[i] == str2[j]){ dp[i][j] = dp[i-1][j-1] + 1; }else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]); if(dp[i][j] > ans) ans = dp[i][j]; } } return ans; } int main() { while(scanf("%s%s", str1 + 1, str2 + 1) == 2){ printf("%d ", LCS()); } return 0; }



  • 相关阅读:
    0401. Binary Watch (E)
    0436. Find Right Interval (M)
    0151. Reverse Words in a String (M)
    1344. Angle Between Hands of a Clock (M)
    0435. Non-overlapping Intervals (M)
    0434. Number of Segments in a String (E)
    0063. Unique Paths II (M)
    0062. Unique Paths (M)
    0100. Same Tree (E)
    0190. Reverse Bits (E)
  • 原文地址:https://www.cnblogs.com/mengfanrong/p/5088825.html
Copyright © 2011-2022 走看看