zoukankan      html  css  js  c++  java
  • POJ1458 Common Subsequence 【最长公共子序列】

    Common Subsequence
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 37614   Accepted: 15058

    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0

    NYOJ同题

    #include <stdio.h>
    #include <string.h>
    #define maxn 1000
    
    char str1[maxn], str2[maxn];
    int dp[maxn][maxn];
    
    int max(int a, int b){ return a > b ?

    a : b; } int LCS() { int ans = 0; for(int i = 1, j; str1[i]; ++i){ for(j = 1; str2[j]; ++j){ if(str1[i] == str2[j]){ dp[i][j] = dp[i-1][j-1] + 1; }else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]); if(dp[i][j] > ans) ans = dp[i][j]; } } return ans; } int main() { while(scanf("%s%s", str1 + 1, str2 + 1) == 2){ printf("%d ", LCS()); } return 0; }



  • 相关阅读:
    Java入门
    Android Gradle plugin requires Java 11 to run. You are currently using Java 1.8
    pypy3.8安装
    asyncio执行阻塞代码
    linux安装go
    python消费rabbitmq
    绑定进程到指定cpu运行
    负载均衡算法
    django版本规划
    FastAPI WebSocket 简单演示
  • 原文地址:https://www.cnblogs.com/mengfanrong/p/5088825.html
Copyright © 2011-2022 走看看