伪异步IO实在堵塞IO的基础上将每个client发送过来的请求由新创建的线程来处理改进为用线程池来处理。因此避免了为每个client请求创建一个新线程造成的资源耗尽问题。
来看一下伪异步IO的服务端代码:
线程池类
import java.util.concurrent.ArrayBlockingQueue; import java.util.concurrent.ExecutorService; import java.util.concurrent.ThreadPoolExecutor; import java.util.concurrent.TimeUnit; /** * @author zhouxuejun * * @date 2014年10月21日 上午10:05:43 */ public class TimerServerHandlerExecutePool { private ExecutorService executor; public TimerServerHandlerExecutePool(int maxPoolSize, int queueSize) { executor = new ThreadPoolExecutor(Runtime.getRuntime() .availableProcessors(), maxPoolSize, 120L, TimeUnit.SECONDS, new ArrayBlockingQueue<java.lang.Runnable>(queueSize)); } public void execute(java.lang.Runnable task) { executor.execute(task); } }
堵塞IO服务端代码:
import java.io.IOException; import java.net.ServerSocket; import java.net.Socket; import com.bio.demo.Server.handler.TimerServerHandler; import com.bio.demo.threadPool.TimerServerHandlerExecutePool; /** * @author zhouxuejun * * @date 2014年10月20日 下午7:08:58 */ public class TimeServer { public static ServerSocket server=null; /** * @param args */ public static void main(String[] args) { // TODO Auto-generated method stub try { server=new ServerSocket(8080); Socket socket=null; TimerServerHandlerExecutePool singleExecutor=new TimerServerHandlerExecutePool(50, 10000); while(true){ socket=server.accept(); //new Thread(new TimerServerHandler(socket)).start(); singleExecutor.execute(new TimerServerHandler(socket));//用线程池的方式来处理client请求 } } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } } }
从表面上来看,因为线程池和消息队列都是有界的,因此。不管client并发连接数多大。他都不会导致线程个数过于膨胀或者内存溢出。相比传统的一连接一线程模型,是一种非常好的改进。可是因为底层的通信依旧採用同步堵塞模型。因此无法从根本上解决这个问题。
以下让我们来深入堵塞IO底层来分析,首先我们来看看java同步IO的API说明:
先来看看Java输入流,以下是InputStream类中截取的一部分代码
/** * Reads some number of bytes from the input stream and stores them into * the buffer array <code>b</code>. The number of bytes actually read is * returned as an integer. <span style="color:#FF0000;"><strong>This method blocks until input data is</strong></span> * <span style="color:#FF0000;"><strong>available, end of file is detected, or an exception is thrown.</strong></span> * * <p> If the length of <code>b</code> is zero, then no bytes are read and * <code>0</code> is returned; otherwise, there is an attempt to read at * least one byte. If no byte is available because the stream is at the * end of the file, the value <code>-1</code> is returned; otherwise, at * least one byte is read and stored into <code>b</code>. * * <p> The first byte read is stored into element <code>b[0]</code>, the * next one into <code>b[1]</code>, and so on. The number of bytes read is, * at most, equal to the length of <code>b</code>. Let <i>k</i> be the * number of bytes actually read; these bytes will be stored in elements * <code>b[0]</code> through <code>b[</code><i>k</i><code>-1]</code>, * leaving elements <code>b[</code><i>k</i><code>]</code> through * <code>b[b.length-1]</code> unaffected. * * <p> The <code>read(b)</code> method for class <code>InputStream</code> * has the same effect as: <pre><code> read(b, 0, b.length) </code></pre> * * @param b the buffer into which the data is read. * @return the total number of bytes read into the buffer, or * <code>-1</code> if there is no more data because the end of * the stream has been reached. * @exception IOException If the first byte cannot be read for any reason * other than the end of the file, if the input stream has been closed, or * if some other I/O error occurs. * @exception NullPointerException if <code>b</code> is <code>null</code>. * @see java.io.InputStream#read(byte[], int, int) */ public int read(byte b[]) throws IOException { return read(b, 0, b.length); }红色加粗部分的AIP说明,当对Socket的输入流进行读取操作的时候。它会一直堵塞下去,知道三件事情发生:
1)有数据可读
2)可用数据读取完成
3)发生空指针或者IO异常
这意味着当对方发送请求或者应答消息比較缓慢、或者网络传输教慢时,读取输入流一方的同学线程将被长时间堵塞。
以下我再从输出流进行分析,来看看输出流OutputStream类,以下是截取的部分代码:
/** * <span style="color:#FF0000;"><strong>Writes <code>len</code> bytes from the specified byte array</strong></span> * <span style="color:#FF0000;"><strong>starting at offset <code>off</code> to this output stream.</strong></span> * The general contract for <code>write(b, off, len)</code> is that * some of the bytes in the array <code>b</code> are written to the * output stream in order; element <code>b[off]</code> is the first * byte written and <code>b[off+len-1]</code> is the last byte written * by this operation. * <p> * The <code>write</code> method of <code>OutputStream</code> calls * the write method of one argument on each of the bytes to be * written out. Subclasses are encouraged to override this method and * provide a more efficient implementation. * <p> * If <code>b</code> is <code>null</code>, a * <code>NullPointerException</code> is thrown. * <p> * If <code>off</code> is negative, or <code>len</code> is negative, or * <code>off+len</code> is greater than the length of the array * <code>b</code>, then an <tt>IndexOutOfBoundsException</tt> is thrown. * * @param b the data. * @param off the start offset in the data. * @param len the number of bytes to write. * @exception IOException if an I/O error occurs. In particular, * an <code>IOException</code> is thrown if the output * stream is closed. */ public void write(byte b[], int off, int len) throws IOException { if (b == null) { throw new NullPointerException(); } else if ((off < 0) || (off > b.length) || (len < 0) || ((off + len) > b.length) || ((off + len) < 0)) { throw new IndexOutOfBoundsException(); } else if (len == 0) { return; } for (int i = 0 ; i < len ; i++) { write(b[off + i]); } }
红色加粗的API说明,当调用OutputStream的write方法写输出流的时候,它将会被堵塞。知道所有要发送的字节所有写入完成,或者发生异常。
通过对堵塞IOAPI输入,输出文档的分析。我们了解到堵塞IO的读和写都是同步堵塞的,堵塞的时间取决于对方IO线程的处理速度和IO的传输速度。可是我们无法保证生产环境的网络状况和对端的应用程序能足够快,一个稳定可靠性高的应用不能依赖对方的处理速度。
所以才有了NIO的出现。