zoukankan      html  css  js  c++  java
  • Longest Palindromic Substring-----最长回文子串

    首先讲讲什么是回文, 看看Wiki是怎么说的:回文,亦称回环,是正读反读都能读通的句子。亦有将文字排列成圆圈者,是一种修辞方式文字游戏。回环运用得当。能够表现两种事物或现象相互依靠或排斥的关系, 比方madam,abba,这样正反都一样的串就是回文串。

    今天要写的问题了就是在一个字符串中找出最长的回文字串。比方串:"abcdedabakml"。 他的最长回文字串就是"abcdedaba"。一般的方法有暴力法,动态规划法,今天来写一个时间复杂度为O(n)的算法。

    回文匹配,普通情况会分奇数和偶数来分开进行设计算法来统计,今天介绍的算法又一次构造了一个字符串,这个新字符串消除了之前的奇偶区别,使得仅仅用设计一种算法就能够。
         1. 首先,构造新的字符串T
              构造方法:在原字符串S的首尾和每一个字符之间增加一个特殊字符'#', 比如S: abba, 则构造后为T: #a#b#b#a#(注:在程序中为防止越界会在首尾再加两个字符,即^#a#b#b#a#$);
         2. 关键算法:
              a[ ]: a[i]代表以位置 i 为中心向左向右可扩展的长度
              idx: 当前取得最大回文的中心位置
              R: 以 idx 为中心。向右扩展 p[idx] 位的最右位置
              j:  与 i 关于 idx 对称的位置
              
               i:   0  1 2 3 4 5 6 7 8 9
              T:  ^ # a # b # b # a # $
              a:     0 1 0 1  4 1 0 1 0
                                 idx        R

              此算法的关键之处在于: 当 i<R时,a[i] 有例如以下简便计算公式 a[i] = min(R-i, a[j]):
                  A. 当 R - i > a[j] 的时候,以T[j]为中心的回文子串包括在以T[mid]为中心的回文子串中,因为 i 和 j 对称,以T[i]为中心的回文子串必定包括在以T[mid]为中心的回文子串中,所以必有 a[i] = a[j], 例如以下图:此时a[i] = a[j] = 1;
                 
               B. 当 R - i < a[j] 的时候,以T[j]为中心的回文子串不一定全然包括于以T[mid]为中心的回文子串中。可是基于对称性可知,下图中两个绿框所包围的部分是同样的,也就是说以S[i]为中心的回文子串,其向右至少会扩张到 R 的位置,也就是说 a[i] >= R-i。至于R之后的部分是否对称,就仅仅能老老实实去匹配了。
              
         3. 得到所求字符串
              找出 p[ ] 数组中最大的值及其下标,记为max和index。
              所求字符串为string(s, (index-1-max)/2, max)

         4. 实现算法:

              // Transform S into T.
              // For example, S = "abba", T = "^#a#b#b#a#$".
              // ^ and $ signs are sentinels appended to each end to avoid bounds checking
              string preProcess(string s) {
                   int n = s.length();
                   if (n == 0) return "^$";
                   string ret = "^";
                   for (int i = 0; i < n; i++)
                       ret += "#" + s.substr(i, 1);
                   ret += "#$";
                   return ret;
              }
    
              string longestPalindrome(string s) {
                   string T = preProcess(s);
                   int n = T.length();
                   int *a = new int[n];
                   int mid = 0, R = 0;
                   for (int i = 1; i < n-1; i++) {
                        int j = 2*mid-i; // 找到i关于mid对称的位置    
                        a[i] = (R > i) ? min(R-i, a[j]) : 0;
                        // Attempt to expand palindrome centered at i
                        while (T[i + 1 + a[i]] == T[i - 1 - a[i]])
                               a[i]++;
                        // If palindrome centered at i expand past R,
                        // adjust center based on expanded palindrome.
                        if (i + a[i] > R) {
                              mid = i;
                              R = i + a[i];
                        }
                   }
                   // Find the maximum element in a.
                   int maxLen = 0;
                   int centerIndex = 0;
                   for (int i = 1; i < n-1; i++) {
                        if (a[i] > maxLen) {
                             maxLen = a[i];
                             centerIndex = i;
                         }
                   }
                   delete[] a;  
                   return s.substr((centerIndex - 1 - maxLen)/2, maxLen);
              }

    參考文章:

               http://leetcode.com/2011/11/longest-palindromic-substring-part-ii.html

    假设你认为本篇对你有收获,请帮顶。
    另外,我本人开通了微信公众号--分享技术之美,我会不定期的分享一些我学习的东西.
    你能够搜索公众号:swalge 或者扫描下方二维码关注我

    (转载文章请注明出处: http://blog.csdn.net/swagle/article/details/24384693 )

  • 相关阅读:
    springboot将接口内容快速生成接口文档导出,swagger将api文档以表格文档导出
    IDEA2019.2或2019.3激活码失效后重新激活教程
    Java代码自动生成,生成前端vue+后端controller、service、dao代码,根据表名自动生成增删改查功能
    百度网盘下载慢解决办法,最新.浏览器下载速度突破方法
    smartGit 版本19.1没有settings文件如何破解
    arp欺骗软件(来自互联网)
    关闭学生端v1.0(附链接)
    [TODO]multiaet/set/multimap/map
    树状数组【洛谷3374】
    luoguP1439
  • 原文地址:https://www.cnblogs.com/mengfanrong/p/5224525.html
Copyright © 2011-2022 走看看