zoukankan      html  css  js  c++  java
  • 洪涝有源淹没算法及淹没结果分析

    洪涝模拟仿真的实现方法主要有两种:一种是基于水动力学的洪水演进模型;还有一种是基于DEM的洪水淹没分析。详细分析例如以下:

    我是GIS从业者,从我们的专业角度出发,选择基于DEM的洪水淹没分析来做洪涝的模拟仿真。而基于DEM的洪水淹没分析方法主要分为有源淹没和无源淹没。

    本篇博客採用有源淹没算法实现洪涝的模拟,算法为八领域种子扩散算法。

    採用C#版本号GDAL编写了FloodSimulation类,以下给出所有源码:

      class FloodSimulation
        {
            #region 类成员变量
    
            //点结构体
            public struct Point
            {
                public int X;          //行号
                public int Y;          //列号
                public int Elevation;  //像素值(高程值)
                public bool IsFlooded; //淹没标记
    
            };
            private bool[,] IsFlood;                //淹没区域标记二维数组,用于标记淹没栅格
            private List<Point> m_FloodBufferList;  //淹没缓冲区堆栈
          
            public Dataset m_DEMDataSet;            //DEM数据集
            public Dataset m_FloodSimulatedDataSet; //洪涝淹没范围数据集
            public int m_XSize;                     //数据X方向栅格个数
            public int m_YSize;                     //数据Y方向栅格个数
            public OSGeo.GDAL.Driver driver;        //影像格式驱动
            public int[] m_FloodBuffer;            //填充缓冲区(洪涝淹没范围)
            public int[] m_DEMdataBuffer;          //DEM数据(存储高程值) 
    
            public double m_AreaFlooded;            //水面面积
            public double m_WaterVolume;            //淹没水体体积
            /* 这里的GeoTransform(影像坐标变换參数)的定义是:通过像素所在的行列值得到其左上角点空间坐标的运算參数
                比如:某图像上(P,L)点左上角的实际空间坐标为:
                Xp = GeoTransform[0] + P * GeoTransform[1] + L * GeoTransform[2];
                Yp = GeoTransform[3] + P * GeoTransform[4] + L * GeoTransform[5];                                                                     */
            public double[] m_adfGeoTransform;   
    
            #endregion
            
            //构造函数
            public FloodSimulation()
            {
                m_adfGeoTransform = new double[6];
                m_FloodBufferList = new List<Point>();
                
            }
    
            /// <summary>
            /// 载入淹没区DEM,并创建淹没范围影像
            /// </summary>
            /// <param name="m_DEMFilePath">DEM文件路径</param>
            /// <returns></returns>
            public void loadDataSet(string m_DEMFilePath)
            {
                //读取DEM数据
                m_DEMDataSet = Gdal.Open(m_DEMFilePath, Access.GA_ReadOnly);
                m_XSize = m_DEMDataSet.RasterXSize;
                m_YSize = m_DEMDataSet.RasterYSize;
                
                //获取影像坐标转换參数
                m_DEMDataSet.GetGeoTransform(m_adfGeoTransform); 
                //读取DEM数据到内存中
                Band m_DEMBand = m_DEMDataSet.GetRasterBand(1); //获取第一个波段
                m_DEMdataBuffer = new int [m_XSize * m_YSize];
                m_DEMBand.ReadRaster(0, 0, m_XSize, m_YSize, m_DEMdataBuffer, m_XSize, m_YSize, 0, 0);
    
                //淹没范围填充缓冲区
                m_FloodBuffer = new int[m_XSize * m_YSize];
                IsFlood=new bool[m_XSize,m_YSize];
    
                //初始化二维淹没区bool数组
                for (int i = 0; i < m_XSize; i++)
                {
                    for (int j = 0; j < m_YSize; j++)
                    {
                        IsFlood[i, j] = false;
                    }
                }
    
                //创建洪涝淹没范围影像
                string m_FloodImagePath = System.IO.Path.GetDirectoryName(System.Windows.Forms.Application.ExecutablePath) + "\FloodSimulation\FloodedRegion.tif";
                if (System.IO.File.Exists(m_FloodImagePath))
                {
                    System.IO.File.Delete(m_FloodImagePath);
                }
    
                //在GDAL中创建影像,先须要明白待创建影像的格式,并获取到该影像格式的驱动
                driver = Gdal.GetDriverByName("GTiff");
                //调用Creat函数创建影像
                // m_FloodSimulatedDataSet = driver.CreateCopy(m_FloodImagePath, m_DEMDataSet, 1, null, null, null);
                m_FloodSimulatedDataSet = driver.Create(m_FloodImagePath, m_XSize, m_YSize, 1, DataType.GDT_Float32, null);
                //设置影像属性
                m_FloodSimulatedDataSet.SetGeoTransform(m_adfGeoTransform); //影像转换參数
                m_FloodSimulatedDataSet.SetProjection(m_DEMDataSet.GetProjectionRef()); //投影
                //m_FloodSimulatedDataSet.WriteRaster(0, 0, m_XSize, m_YSize, m_FloodBuffer, m_XSize, m_YSize, 1, null, 0, 0, 0);
                
                //输出影像
                m_FloodSimulatedDataSet.GetRasterBand(1).WriteRaster(0, 0, m_XSize, m_YSize, m_FloodBuffer, m_XSize, m_YSize, 0, 0);
                m_FloodSimulatedDataSet.GetRasterBand(1).FlushCache();
                m_FloodSimulatedDataSet.FlushCache();
    
            }
    
            /// <summary>
            /// 种子扩散算法淹没分析
            /// </summary>
            /// <param name="m_Lat">种子点纬度</param>
            /// <param name="m_Log">种子点经度</param>
            /// <param name="m_FloodLevel">淹没水位</param>
            public void FloodFill8Direct(double m_Lat,double m_Log,double m_FloodLevel)
            {
                //首先依据种子点经纬度获取其所在行列号
                Point pFloodSourcePoint = new Point();
                int x, y;
                geoToImageSpace(m_adfGeoTransform, m_Log, m_Lat, out x, out y);
                pFloodSourcePoint.X = x;
                pFloodSourcePoint.Y = y;
                
                //获取种子点高程值
                pFloodSourcePoint.Elevation = GetElevation(pFloodSourcePoint);
                m_FloodBufferList.Add(pFloodSourcePoint);
    
                //推断堆栈中时候还有未被淹没点,如有继续搜索。没有则淹没分析结束。

    while (m_FloodBufferList.Count!=0) { Point pFloodSourcePoint_temp = m_FloodBufferList[0]; int rowX = pFloodSourcePoint_temp.X; int colmY = pFloodSourcePoint_temp.Y; //标记可淹没,并从淹没堆栈中移出 IsFlood[rowX, colmY] = true; m_FloodBuffer[getIndex(pFloodSourcePoint_temp)] = 1; m_FloodBufferList.RemoveAt(0); //向中心栅格单元的8个临近方向搜索连通域 for (int i = rowX - 1; i < rowX + 2; i++) { for (int j = colmY - 1; j < colmY + 2; j++) { //推断是否到达栅格边界 if (i<=m_XSize&&j<=m_YSize) { Point temp_point = new Point(); temp_point.X = i; temp_point.Y = j; temp_point.Elevation = GetElevation(temp_point); //搜索能够淹没且未被标记的栅格单元 if ((temp_point.Elevation<m_FloodLevel||temp_point.Elevation <= pFloodSourcePoint_temp.Elevation) && IsFlood[temp_point.X, temp_point.Y] == false) { //将符合条件的栅格单元增加堆栈,标记为淹没,避免反复运算 m_FloodBufferList.Add(temp_point); IsFlood[temp_point.X, temp_point.Y] = true; m_FloodBuffer[getIndex(temp_point)] = 1; } } } } } //统计淹没网格数 int count = 0; for (int i = 0; i < m_XSize; i++) { for (int j = 0; j < m_YSize; j++) { if (IsFlood[i,j]==true) { count++; } } } } /// <summary> /// 输出洪涝淹没范围图 /// </summary> public void OutPutFloodRegion() { m_FloodSimulatedDataSet.GetRasterBand(1).WriteRaster(0, 0, m_XSize, m_YSize, m_FloodBuffer, m_XSize, m_YSize, 0, 0); // m_FloodSimulatedDataSet.WriteRaster(0, 0, m_XSize, m_YSize, m_FloodBuffer, m_XSize, m_YSize, 1, null, 0, 0, 0); m_FloodSimulatedDataSet.GetRasterBand(1).FlushCache(); m_FloodSimulatedDataSet.FlushCache(); } // public void OutPutFloodedInfo() // { // } /// <summary> /// 获取第x行第y列栅格索引 /// </summary> /// <param name="point">栅格点</param> /// <returns>该点在DEM内存数组中的索引</returns> private int getIndex(Point point) { return point.Y* m_XSize + point.X; } /// <summary> /// 获取高程值 /// </summary> /// <param name="m_point">栅格点</param> /// <returns>高程值</returns> private int GetElevation(Point m_point) { return m_DEMdataBuffer[getIndex(m_point)]; } /// <summary> /// 从像素空间转换到地理空间 /// </summary> /// <param name="adfGeoTransform">影像坐标变换參数</param> /// <param name="pixel">像素所在行</param> /// <param name="line">像素所在列</param> /// <param name="x">X</param> /// <param name="y">Y</param> public void imageToGeoSpace(double[] m_GeoTransform, int pixel, int line, out double X, out double Y) { X = m_GeoTransform[0] + pixel * m_GeoTransform[1] + line * m_GeoTransform[2]; Y = m_GeoTransform[3] + pixel * m_GeoTransform[4] + line * m_GeoTransform[5]; } /// <summary> /// 从地理空间转换到像素空间 /// </summary> /// <param name="adfGeoTransform">影像坐标变化參数</param> /// <param name="x">X(经度)</param> /// <param name="y">Y(纬度)</param> /// <param name="pixel">像素所在行</param> /// <param name="line">像素所在列</param> public void geoToImageSpace(double[] m_GeoTransform, double x, double y, out int pixel, out int line) { line = (int)((y * m_GeoTransform[1] - x * m_GeoTransform[4] + m_GeoTransform[0] * m_GeoTransform[4] - m_GeoTransform[3] * m_GeoTransform[1]) / (m_GeoTransform[5] * m_GeoTransform[1] - m_GeoTransform[2] * m_GeoTransform[4])); pixel = (int)((x - m_GeoTransform[0] - line * m_GeoTransform[2]) / m_GeoTransform[1]); } }


    模拟结果在ArcGlobe中的显示效果图:


    欢迎大家留言交流。


  • 相关阅读:
    Flink 源码(五):Flink 环境准备及提交流程(二)创建 Yarn 客户端应用程序
    Flink 源码(四):Flink 环境准备及提交流程(一)程序起点与创建 Yarn 客户端应用程序
    Hive高级(6):优化(6)explain执行计划详解(一)
    Flink实例(129):状态管理(十八)FLINK-SQL使用基础(13)Table API 和 SQL 模块状态管理(三) Flink SQL空闲状态保留时间(idle state retention time)实现原理
    Flink实例(128):状态管理(十七)FLINK-SQL使用基础(12)Table API 和 SQL 模块状态管理(二)
    Flink实例(127):状态管理(十六)FLINK-SQL使用基础(11)Table API 和 SQL 模块状态管理(一)
    Flink实例(126):状态管理(十五)State 过期时间TTL
    GIT基础(十):Git更新代码到本地仓库
    Java 面向对象(一)面向对象思想
    rust test
  • 原文地址:https://www.cnblogs.com/mengfanrong/p/5257185.html
Copyright © 2011-2022 走看看