zoukankan      html  css  js  c++  java
  • HDOJ 5184 Brackets 卡特兰数扩展


    既求从点(0,0)仅仅能向上或者向右而且不穿越y=x到达点(a,b)有多少总走法...

    公式: C(a+b,min(a,b))-C(a+b,min(a,b)-1)  /// 

    折纸法证明卡特兰数: http://blog.sina.com.cn/s/blog_6917f47301010cno.html


    Brackets

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 506    Accepted Submission(s): 120


    Problem Description
    We give the following inductive definition of a “regular brackets” sequence:
    ● the empty sequence is a regular brackets sequence,
    ● if s is a regular brackets sequence, then (s) are regular brackets sequences, and
    ● if a and b are regular brackets sequences, then ab is a regular brackets sequence.
    ● no other sequence is a regular brackets sequence

    For instance, all of the following character sequences are regular brackets sequences:
    (), (()), ()(), ()(())
    while the following character sequences are not:
    (, ), )(, ((), ((()

    Now we want to construct a regular brackets sequence of length n, how many regular brackets sequences we can get when the front several brackets are given already.
     

    Input
    Multi test cases (about 2000), every case occupies two lines.
    The first line contains an integer n.
    Then second line contains a string str which indicates the front several brackets.

    Please process to the end of file.

    [Technical Specification]
    1n1000000
    str contains only '(' and ')' and length of str is larger than 0 and no more than n.
     

    Output
    For each case。output answer % 1000000007 in a single line.
     

    Sample Input
    4 () 4 ( 6 ()
     

    Sample Output
    1 2 2
    Hint
    For the first case the only regular sequence is ()(). For the second case regular sequences are (()) and ()(). For the third case regular sequences are ()()() and ()(()).
     



    /* ***********************************************
    Author        :CKboss
    Created Time  :2015年03月18日 星期三 20时10分21秒
    File Name     :HDOJ5184.cpp
    ************************************************ */
    
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <string>
    #include <cmath>
    #include <cstdlib>
    #include <vector>
    #include <queue>
    #include <set>
    #include <map>
    
    using namespace std;
    
    typedef long long int LL;
    
    const int maxn=1001000;
    const LL mod=1000000007LL;
    
    int n,len;
    char str[maxn];
    
    LL inv[maxn];
    LL jc[maxn],jcv[maxn];
    
    void init()
    {
    	inv[1]=1; jc[0]=1; jcv[0]=1;
    	jc[1]=1; jcv[1]=1;
    
    	for(int i=2;i<maxn;i++)
    	{
    		inv[i]=inv[mod%i]*(mod-mod/i)%mod;
    		jc[i]=(jc[i-1]*i)%mod;
    		jcv[i]=(jcv[i-1]*inv[i])%mod;
    	}
    }
    
    LL COMB(LL n,LL m)
    {
    	if(m<0||m>n) return 0LL;
    	if(m==0||m==n) return 1LL;
    	LL ret=((jc[n]*jcv[n-m])%mod*jcv[m])%mod;
    	return ret;
    }
    
    int main()
    {
        //freopen("in.txt","r",stdin);
        //freopen("out.txt","w",stdout);
    
    	init();
    	while(scanf("%d",&n)!=EOF)
    	{
    		scanf("%s",str);
    		len=strlen(str);
    
    		bool flag=true;
    		if(n%2==1) flag=false;
    		int left=0,right=0;
    		for(int i=0;i<len&&flag;i++)
    		{
    			if(str[i]=='(') left++;
    			else if(str[i]==')') right++;
    			if(left>=right) continue;
    			else flag=false;
    		}
    		if(flag==false) { puts("0"); continue; }
    
    		int a=n/2-left; /// remain left
    		int b=n/2-right; /// remain right
    
    		if(b>a) swap(a,b);
    		LL ans = (COMB(a+b,b)-COMB(a+b,b-1)+mod)%mod;
    		cout<<ans<<endl;
    	}
        
        return 0;
    }
    


  • 相关阅读:
    【xsy2506】 bipartite 并查集+线段树
    Linux K8s容器集群技术
    Linux 运维工作中的经典应用ansible(批量管理)Docker容器技术(环境的快速搭建)
    Linux Django项目部署
    Linux Django项目测试
    Linux 首先基本包安装(vim啊什么的),源,源优化,项目架构介绍, (LNMuWsgi)Django项目相关软件mysql,redies,python(相关模块)安装配置测试
    Linux centos系统安装后的基本配置,Linux命令
    Linux 虚拟机上安装linux系统 (ip:子网掩码,网关,dns,交换机,路由知识回顾)
    $ Django 调API的几种方式,django自定义错误响应
    $Django 路飞之显示视频,Redis存购物车数据,优惠卷生成表,优惠卷的一个领取表。(知识小回顾)
  • 原文地址:https://www.cnblogs.com/mengfanrong/p/5262097.html
Copyright © 2011-2022 走看看