一、什么算法
算法:一个计算过程,解决问题的方法
二、时间复杂度
看代码:
Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<O(n2logn)< Ο(n3)<…<Ο(2^n)<Ο(n!)
三、空间复杂度
空间复杂度:用来评估算法内存占用大小的一个式子
复习:递归
递归的两个特点:
调用自身
结束条件
看下面几个函数
def func1(x):
print(x)
func1(x-1)
def func2(x):
if x>0:
print(x)
func2(x+1)
def func3(x):
if x>0:
print(x)
func3(x-1)
def func4(x):
if x>0:
func4(x-1)
print(x)
def test(n): if n == 0: print("我的小鲤鱼", end='') else: print("抱着", end='') test(n-1) print("的我", end='') test(5)
递归实例:汉诺塔问题
t = 0 def hanoi(n, A, B, C): global t if n > 0: hanoi(n-1, A, C, B) t += 1 print("%s -> %s" % (A, C)) hanoi(n-1, B, A, C) hanoi(8,'A','B','C') print(t)
列表查找
二分法查找
使用二分法查找来查找3
递归版本的二分法查找
排序Low B三人组
冒泡排序
选择排序
插入排序
算法的关键点:
有序区
无序区
1、冒泡排序的思路
冒泡排序---优化
import random from timewrap import * @cal_time def bubble_sort(li): for i in range(len(li) - 1): # i 表示趟数 # 第 i 趟时: 无序区:(0,len(li) - i) for j in range(0, len(li) - i - 1): if li[j] > li[j+1]: li[j], li[j+1] = li[j+1], li[j] @cal_time def bubble_sort_2(li): #冒泡排序优化 for i in range(len(li) - 1): # i 表示趟数 # 第 i 趟时: 无序区:(0,len(li) - i) change = False for j in range(0, len(li) - i - 1): if li[j] > li[j+1]: li[j], li[j+1] = li[j+1], li[j] change = True if not change: return li = list(range(10000)) # random.shuffle(li) # print(li) bubble_sort_2(li) print(li)
选择排序的思路
选择排序代码
import random from timewrap import * @cal_time def select_sort(li): for i in range(len(li) - 1): # i 表示趟数,也表示无序区开始的位置 min_loc = i # 最小数的位置 for j in range(i + 1, len(li)): if li[j] < li[min_loc]: min_loc = j li[i], li[min_loc] = li[min_loc], li[i] li = list(range(10000)) random.shuffle(li) print(li) select_sort(li) print(li)
插入排序思路
插入排序代码
import random from timewrap import * @cal_time def insert_sort(li): for i in range(1, len(li)): # i 表示无序区第一个数 tmp = li[i] # 摸到的牌 j = i - 1 # j 指向有序区最后位置 while li[j] > tmp and j >= 0: #循环终止条件: 1. li[j] <= tmp; 2. j == -1 li[j+1] = li[j] j -= 1 li[j+1] = tmp li = list(range(10000)) random.shuffle(li) print(li) insert_sort(li) print(li)
排序LOW B三人组------小结
快速排序:
from timewrap import * import random def _sift(li, low, high): """ :param li: :param low: 堆根节点的位置 :param high: 堆最有一个节点的位置 :return: """ i = low # 父亲的位置 j = 2 * i + 1 # 孩子的位置 tmp = li[low] # 原省长 while j <= high: if j + 1 <= high and li[j + 1] > li[j]: # 如果右孩子存在并且右孩子更大 j += 1 if tmp < li[j]: # 如果原省长比孩子小 li[i] = li[j] # 把孩子向上移动一层 i = j j = 2 * i + 1 else: li[i] = tmp # 省长放到对应的位置上(干部) break else: li[i] = tmp # 省长放到对应的位置上(村民/叶子节点) def sift(li, low, high): """ :param li: :param low: 堆根节点的位置 :param high: 堆最有一个节点的位置 :return: """ i = low # 父亲的位置 j = 2 * i + 1 # 孩子的位置 tmp = li[low] # 原省长 while j <= high: if j + 1 <= high and li[j+1] > li[j]: # 如果右孩子存在并且右孩子更大 j += 1 if tmp < li[j]: # 如果原省长比孩子小 li[i] = li[j] # 把孩子向上移动一层 i = j j = 2 * i + 1 else: break li[i] = tmp @cal_time def heap_sort(li): n = len(li) # 1. 建堆 for i in range(n//2-1, -1, -1): sift(li, i, n-1) # 2. 挨个出数 for j in range(n-1, -1, -1): # j表示堆最后一个元素的位置 li[0], li[j] = li[j], li[0] # 堆的大小少了一个元素 (j-1) sift(li, 0, j-1) li = list(range(10000)) random.shuffle(li) heap_sort(li) print(li) # li=[2,9,7,8,5,0,1,6,4,3] # sift(li, 0, len(li)-1) # print(li)
import heapq, random li = [5,8,7,6,1,4,9,3,2] heapq.heapify(li) print(heapq.heappop(li)) print(heapq.heappop(li)) def heap_sort(li): heapq.heapify(li) n = len(li) new_li = [] for i in range(n): new_li.append(heapq.heappop(li)) return new_li li = list(range(10000)) random.shuffle(li) # li = heap_sort(li) # print(li) print(heapq.nlargest(100, li))
import random from timewrap import * import copy import sys def merge(li, low, mid, high): i = low j = mid + 1 ltmp = [] while i <= mid and j <= high: if li[i] < li[j]: ltmp.append(li[i]) i += 1 else: ltmp.append(li[j]) j += 1 while i <= mid: ltmp.append(li[i]) i += 1 while j <= high: ltmp.append(li[j]) j += 1 li[low:high+1] = ltmp def _merge_sort(li, low, high): if low < high: # 至少两个元素 mid = (low + high) // 2 _merge_sort(li, low, mid) _merge_sort(li, mid+1, high) merge(li, low, mid, high) print(li[low:high+1]) def merge_sort(li): return _merge_sort(li, 0, len(li)-1) li = list(range(16)) random.shuffle(li) print(li) merge_sort(li) print(li)
希尔排序
插入排序 def insert_sort(li): for i in range(1, len(li)): # i 表示无序区第一个数 tmp = li[i] # 摸到的牌 j = i - 1 # j 指向有序区最后位置 while li[j] > tmp and j >= 0: #循环终止条件: 1. li[j] <= tmp; 2. j == -1 li[j+1] = li[j] j -= 1 li[j+1] = tmp 比较 希尔排序 def shell_sort(li): d = len(li) // 2 while d > 0: for i in range(d, len(li)): tmp = li[i] j = i - d while li[j] > tmp and j >= 0: li[j+d] = li[j] j -= d li[j+d] = tmp d = d >> 1
计数排序
# 0 0 1 1 2 4 3 3 1 4 5 5 import random import copy from timewrap import * @cal_time def count_sort(li, max_num = 100): count = [0 for i in range(max_num+1)] for num in li: count[num]+=1 li.clear() for i, val in enumerate(count): for _ in range(val): li.append(i) @cal_time def sys_sort(li): li.sort() li = [random.randint(0,100) for i in range(100000)] li1 = copy.deepcopy(li) count_sort(li) sys_sort(li1)
from collections import deque f = open('test.txt','r') q = deque(f, 3) for line in q: print(line)