zoukankan      html  css  js  c++  java
  • [what is machine learning?]

    1.2 [what is machine learning?]
    1.人:observation -->  learing  -->  skill
    机器:data --> ML --> improved performance measure /skill
    2.什么情况下适合使用机器学习:
    (1)some 'underlying pattern' to be learned
    (2)not easy(programmable) definition :不是很容易写出一些规则去处理
    (3)data about the pattern : inputs
    3.example(best suited ML):
    (1)预测婴儿在下一次哪个时间点会哭?  no:  (1)no pattern
    (2)判断一个图像中是否包含圆形?  yes   no: (2)很容易写definitioin/program
    (3)判断是否给一个用户发放信用卡?  yes  :(1)user behavior (2)not easily program(3)data
    (4)地球是否hi在未来十年因为滥用核能而毁灭? no: (3)no data yet

    1.3[applications of ML]
    1.Food(某家餐厅是否会引起食物中毒)
    data:twitter+location
    skill:tell food poisoning likeliness of restaurant
    2.Clothing
    data:sales figures销售数据 + client surveys顾客喜好
    skill:give good recommendations to clients
    3.Housing
    data:characteristics of building and their energy load耗能状况
    skill:predict energy load of other buildings closely
    4.transportation
    data:traffic sign images and meanings交通标志
    skill:recognize traffic signs accurately
     5.Education
    data:students' records on quizzes on a math tutoring system
    skill:predict whether a student can give a correct answer to another quiz question
     
    answer correctly~~[recent strength of student > difficulty of question]
    data:9 million records from students
    ML determines(reverse-engineers)  strength and difficult auto
    6.Entertainment
    data:how many users have rated some movies
    skill:predict how a user would rate an unrated movie
     
    data: 1亿 ratings that 480,189 users gave to 17,770 movies(Netflix 线上租赁DVD)
     1.4Formalize the learning problem
    input:x->X
    output:y->Y
    f:X->Y
    data: D{(x1,y1),(x2,y2),,,}
    hypothesis -> skill  g:x->y
     
    {(x n , y n )} from f  -->ML-->  g
    A:algorithm
    H:hypothesis     利用A从H的众多假设里选择一个最接近f的g.
     
    1.5data mining数据挖掘/AI:Artificial Intelligence/Statistics
    DM :use huge data to find property that is interesting
    ML = DM(KDDCups)
    AI:
    ML can realize AI,
    eg. 下棋:(传统方法:game tree; ML: learning from board data)
    Statistics:use data to make inference about unknown process
        g is an inference outcome(预测推论的结果) ;f is something unknown

      statistics can be used to achieve ML

  • 相关阅读:
    对函数的推广
    自然语言也支持泛型
    用委托实现对List的常用方法提取
    C#中的特性(Attributes)(翻译)(转)
    用JQUERY增删元素
    表格折叠展开
    下一代编程语言可能具有的特点
    一种多继承方案
    几年前毕业设计做的CAD二次开发
    数据结构 003.1.1 栈的基本概念
  • 原文地址:https://www.cnblogs.com/mengxiangjialzh/p/8325363.html
Copyright © 2011-2022 走看看