zoukankan      html  css  js  c++  java
  • HDU 5338 ZZX AND PERMUTATIONS 线段树

    链接

    多校题解

    胡搞。。

    题意太难懂了。

    ZZX and Permutations

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
    Total Submission(s): 310    Accepted Submission(s): 83


    Problem Description
    ZZX likes permutations.

    ZZX knows that a permutation can be decomposed into disjoint cycles(see https://en.wikipedia.org/wiki/Permutation#Cycle_notation). For example:
    145632=(1)(35)(462)=(462)(1)(35)=(35)(1)(462)=(246)(1)(53)=(624)(1)(53)……
    Note that there are many ways to rewrite it, but they are all equivalent.
    A cycle with only one element is also written in the decomposition, like (1) in the example above.

    Now, we remove all the parentheses in the decomposition. So the decomposition of 145632 can be 135462,462135,351462,246153,624153……

    Now you are given the decomposition of a permutation after removing all the parentheses (itself is also a permutation). You should recover the original permutation. There are many ways to recover, so you should find the one with largest lexicographic order.
     

    Input
    First line contains an integer t, the number of test cases.
    Then t testcases follow. In each testcase:
    First line contains an integer n, the size of the permutation.
    Second line contains n space-separated integers, the decomposition after removing parentheses.

    n105. There are 10 testcases satisfying n105, 200 testcases satisfying n1000.
     

    Output
    Output n space-separated numbers in a line for each testcase.
    Don't output space after the last number of a line.
     

    Sample Input
    2 6 1 4 5 6 3 2 2 1 2
     

    Sample Output
    4 6 2 5 1 3 2 1
     

    Author
    XJZX
     

    Source
    #include <iostream>
    #include <fstream>
    #include <string.h>
    #include <string>
    #include <time.h>
    #include <vector>
    #include <map>
    #include <queue>
    #include <algorithm>
    #include <stack>
    #include <cstring>
    #include <cmath>
    #include <set>
    #include <vector>
    using namespace std;
    template <class T>
    inline bool rd(T &ret) {
    	char c; int sgn;
    	if (c = getchar(), c == EOF) return 0;
    	while (c != '-' && (c<'0' || c>'9')) c = getchar();
    	sgn = (c == '-') ? -1 : 1;
    	ret = (c == '-') ? 0 : (c - '0');
    	while (c = getchar(), c >= '0'&&c <= '9') ret = ret * 10 + (c - '0');
    	ret *= sgn;
    	return 1;
    }
    template <class T>
    inline void pt(T x) {
    	if (x < 0) {
    		putchar('-');
    		x = -x;
    	}
    	if (x > 9) pt(x / 10);
    	putchar(x % 10 + '0');
    }
    typedef long long ll;
    typedef pair<int, ll> pii;
    const double eps = 1e-9;
    const int N = 200000 + 10;
    #define L(x) tree[x].l
    #define R(x) tree[x].r
    #define M(x) tree[x].ma
    #define ls (id<<1)
    #define rs (id<<1|1)
    struct node {
    	int l, r;
    	int ma;
    }tree[N << 2];
    int a[N], p[N];
    void Up(int id) {
    	M(id) = max(M(ls), M(rs));
    }
    void build(int l, int r, int id) {
    	L(id) = l; R(id) = r;
    	if (l == r) { M(id) = a[l];return; }
    	int mid = (l + r) >> 1;
    	build(l, mid, ls); build(mid + 1, r, rs);
    	Up(id);
    }
    void update(int pos, int id) {
    	if (L(id) == R(id))
    	{
    		M(id) = -1;return;
    	}
    	int mid = (L(id) + R(id)) >> 1;
    	if (pos <= mid)update(pos, ls);
    	else update(pos, rs);
    	Up(id);
    }
    int query(int l, int r, int id) {
    	if (l == L(id) && R(id) == r)return M(id);
    	int mid = (L(id) + R(id)) >> 1;
    	if (r <= mid)return query(l, r, ls);
    	else if (mid < l)return query(l, r, rs);
    	else return max(query(l, mid, ls), query(mid + 1, r, rs));
    }
    int n;
    int use[N], num[N];
    pii b[N];
    int ans[N];
    void getcir(int l, int r) {
    	if (l > r)return;
    	for (int i = l; i <= r; i++) {
    		if (use[a[i]])continue;
    		int to = i + 1;
    		if (to > r) to = l;
    		ans[a[i]] = a[to];
    		use[a[i]] = 1;
    		num[a[to]] = 1;
    		update(i, 1);
    	}
    }
    int getmax(int l, int r) {
    	if (l > r)return -1;
    	return query(l, r, 1);
    }
    int hehe[N];
    set<int>s;
    int main() {
    	int T;rd(T);
    	while (T--) {
    		s.clear();
    		s.insert(0);
    		rd(n);
    		for (int i = 1; i <= n; i++) {
    			rd(a[i]);
    			p[a[i]] = i;
    			use[i] = num[i] = false;
    			b[i] = { a[i], i };
    			ans[i] = 0;
    		}
    		build(1, n, 1);
    		sort(b + 1, b + 1 + n);
    		int top = 0;
    		for (int i = 1; i <= n; i++) {
    			if (use[i])continue;
    			int idx = b[i].second;
    			int t[3] = { -1, -1, -1 };
    			if (idx < n && !num[a[idx+1]])t[0] = a[idx + 1];
    			top = -(*s.upper_bound(-idx));
    			t[1] = getmax(top + 1, idx - 1);
    			if (num[i]==false)t[2] = i;
    			if (t[0] > max(t[1], t[2]))
    			{
    				ans[i] = t[0]; use[i] = 1;
    				num[t[0]] = 1; 
    				update(idx + 1, 1);
    			}
    			else if (t[1] > max(t[0], t[2]))
    			{
    				getcir(p[t[1]], idx);
    				s.insert(-idx);
    			}
    			else {
    				getcir(idx, idx);
    				s.insert(-idx);
    			}
    		}
    		for (int i = 1; i <= n; i++)
    		{
    			pt(ans[i]);i == n ? putchar('
    ') : putchar(' ');
    		}
    	}
    	return 0;
    }
    /*
    99
    3
    1 3 2
    ans: 3 2 1
    5
    1 5 2 3 4
    ans: 5 3 4 2 1
     
    5
    5 2 3 4 1
    ans : 5 3 4 1 2
     
    7
    6 7 1 3 2 5 4
    ans:7 5 3 4 2 6 1
     
    1
    8
    1 3 6 4 8 7 2 5
     
    1
    5
    3 2 4 5 1
     
    */


  • 相关阅读:
    [LeetCode]Surrounded Regions
    生产者消费者问题
    多线程试题汇总
    Linux多线程编程
    运算符优先级表
    正向代理和反向代理
    遗传算法
    嵌入式培训学习历程第十五天
    嵌入式培训学习历程第十四天
    一个猜数的游戏
  • 原文地址:https://www.cnblogs.com/mfmdaoyou/p/6881579.html
Copyright © 2011-2022 走看看