zoukankan      html  css  js  c++  java
  • NYOJ 927 The partial sum problem 【DFS】+【剪枝】

    The partial sum problem

    时间限制:1000 ms  |  内存限制:65535 KB
    难度:2
    描写叙述
    One day,Tom’s girlfriend give him an array A which contains N integers and asked him:Can you choose some integers from the N integers and the sum of them is equal to K. 
    输入
    There are multiple test cases.
    Each test case contains three lines.The first line is an integer N(1≤N≤20),represents the array contains N integers. The second line contains N integers,the ith integer represents A[i](-10^8≤A[i]≤10^8).The third line contains an integer K(-10^8≤K≤10^8).
    输出
    If Tom can choose some integers from the array and their them is K,printf ”Of course,I can!”; other printf ”Sorry,I can’t!”.
    例子输入
    4
    1 2 4 7
    13
    4
    1 2 4 7
    15
    例子输出
    Of course,I can!
    Sorry,I can't!

    这题非常经典,剪枝的时候要细心。

    #include <stdio.h>
    #include <stdlib.h>
    int n, arr[22], sum, vis[22], ok, count;
    const char *sam[] = {"Sorry,I can't!
    ", "Of course,I can!
    "};
    
    int cmp(const void *a, const void *b){
    	return *(int *)a - *(int *)b;
    }
    
    void DFS(int k){
    	if(count == sum){
    		ok = 1; return;
    	}
    	
    	for(int i = k; i < n; ++i){
    		if(i && arr[i] == arr[i-1] && !vis[i-1]) //cut
    			continue;
    		if(count > sum && arr[i] > 0) return; //cut
    		
    		count += arr[i]; vis[i] = 1;
    		DFS(i + 1);
    		if(ok) return;
    		count -= arr[i]; vis[i] = 0;
    	}
    }
    
    int main(){
    	while(scanf("%d", &n) == 1){
    		for(int i = 0; i < n; ++i){
    			scanf("%d", arr + i);
    			vis[i] = 0;
    		}
    		scanf("%d", &sum);
    		qsort(arr, n, sizeof(int), cmp);
    		count = ok = 0; DFS(0);
    		printf(ok ? sam[1] : sam[0]);
    	}
    	return 0;
    }
    


  • 相关阅读:
    MD文件利用标题等级进行分割代码实现
    IDEA插件-Git Commit Template
    IDEA插件-Translation
    IDEA使用-Debug回到上一步
    Java语法糖详解
    MySQL 事务的隔离级别初窥
    Java异常体系概述
    ssh-copy-id三步实现SSH免密登录
    深入理解ThreadLocal
    使用Guava RateLimiter限流入门到深入
  • 原文地址:https://www.cnblogs.com/mfmdaoyou/p/7026950.html
Copyright © 2011-2022 走看看