zoukankan      html  css  js  c++  java
  • HDU 1853 Cyclic Tour(最小费用最大流)

    Cyclic Tour

    Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/65535 K (Java/Others)
    Total Submission(s): 1879    Accepted Submission(s): 938


    Problem Description
    There are N cities in our country, and M one-way roads connecting them. Now Little Tom wants to make several cyclic tours, which satisfy that, each cycle contain at least two cities, and each city belongs to one cycle exactly. Tom wants the total length of all the tours minimum, but he is too lazy to calculate. Can you help him?
     

    Input
    There are several test cases in the input. You should process to the end of file (EOF).
    The first line of each test case contains two integers N (N ≤ 100) and M, indicating the number of cities and the number of roads. The M lines followed, each of them contains three numbers A, B, and C, indicating that there is a road from city A to city B, whose length is C. (1 ≤ A,B ≤ N, A ≠ B, 1 ≤ C ≤ 1000).
     

    Output
    Output one number for each test case, indicating the minimum length of all the tours. If there are no such tours, output -1.
     

    Sample Input
    6 9 1 2 5 2 3 5 3 1 10 3 4 12 4 1 8 4 6 11 5 4 7 5 6 9 6 5 4 6 5 1 2 1 2 3 1 3 4 1 4 5 1 5 6 1
     

    Sample Output
    42 -1
    Hint
    In the first sample, there are two cycles, (1->2->3->1) and (6->5->4->6) whose length is 20 + 22 = 42.
     

    Author
    RoBa@TJU
     

    Source
    题意:给一个有向图,问每一个点都仅仅在一个简单环上。能够有多个环,边权总和最小为多少,假设不满足条件就输出-1。
    #include<stdio.h>
    #include<string.h>
    #include<queue>
    using namespace std;
    const int MAXN = 10010;
    const int MAXM = 100100;
    const int INF = 1<<30;
    struct EDG{
        int to,next,cap,flow;
        int cost;  //每条边的单位价格
    }edg[MAXM];
    int head[MAXN],eid;
    int pre[MAXN], cost[MAXN]  ; //点0~(n-1)
    
    void init(){
        eid=0;
        memset(head,-1,sizeof(head));
    }
    void addEdg(int u,int v,int cap,int cst){
        edg[eid].to=v; edg[eid].next=head[u]; edg[eid].cost = cst;
        edg[eid].cap=cap; edg[eid].flow=0; head[u]=eid++;
    
        edg[eid].to=u; edg[eid].next=head[v]; edg[eid].cost = -cst;
        edg[eid].cap=0; edg[eid].flow=0; head[v]=eid++;
    }
    
    bool inq[MAXN];
    bool spfa(int sNode,int eNode,int n){
        queue<int>q;
        for(int i=0; i<n; i++){
            inq[i]=false; cost[i]= INF;
        }
        cost[sNode]=0; inq[sNode]=1; pre[sNode]=-1;
        q.push(sNode);
        while(!q.empty()){
            int u=q.front(); q.pop();
            inq[u]=0;
            for(int i=head[u]; i!=-1; i=edg[i].next){
                int v=edg[i].to;
                if(edg[i].cap-edg[i].flow>0 && cost[v]>cost[u]+edg[i].cost){ //在满足可增流的情况下,最小花费
                    cost[v] = cost[u]+edg[i].cost;
                    pre[v]=i;   //记录路径上的边
                    if(!inq[v])
                        q.push(v),inq[v]=1;
                }
            }
        }
        return cost[eNode]!=INF;    //推断有没有增广路
    }
    //反回的是最大流,最小花费为minCost
    int minCost_maxFlow(int sNode,int eNode ,int& minCost,int n){
        int ans=0;
        while(spfa(sNode,eNode,n)){
            ans++;
            for(int i=pre[eNode]; i!=-1; i=pre[edg[i^1].to]){
                edg[i].flow+=1; edg[i^1].flow-=1;
                minCost+=edg[i].cost;
            }
        }
        return ans;
    }
    void scanf(int &ans){
        char ch;
        while(ch=getchar()){
            if(ch>='0'&&ch<='9')
                break;
        }
        ans=ch-'0';
        while(ch=getchar()){
            if(ch<'0'||ch>'9')
                break;
            ans=ans*10+ch-'0';
        }
    }
    int  mapt[1005][1005];
    int main(){
        int n,m , u, v, d ;
        while(scanf("%d%d",&n,&m)>0){
            init();
            int s=0, t=2*n+1;
    
            for(int i=1; i<=n; i++){
                addEdg(s , i , 1 , 0);
                addEdg(i+n , t , 1 , 0);
                for(int j=1; j<=n; j++)
                    mapt[i][j]=INF;
            }
            while(m--){
                scanf(u); scanf(v); scanf(d);
                if(mapt[u][v]>d)
                    mapt[u][v]=d;
            }
            for( u=1; u<=n; u++)
                for(v=1; v<=n; v++)
                if(mapt[u][v]!=INF)
                    addEdg(u,v+n,1,mapt[u][v]);
    
            int mincost=0;
           n-= minCost_maxFlow(s , t , mincost , t+1);
            if(n==0)
                printf("%d
    ",mincost);
            else
                printf("-1
    ");
        }
    }
    


  • 相关阅读:
    ETCD集群部署 和flanne网络插件通信原理介绍
    prometheus02 nodeexporter部署及使用
    docker容器的存储资源(volume)
    ActionScript 3.0 事件机制小结
    ActionScript 3.0 装饰器模式实例
    固定头和底,中间部分自适应布局
    ActionScript 3.0 MVC模式小实例
    A*算法的Actionscript3.0实例
    [Database]sql server 2008 不允许保存更改,您所做的更改要求删除并重新创建以下表 的解决办法
    在phpstorm中svn的使用
  • 原文地址:https://www.cnblogs.com/mfmdaoyou/p/7142521.html
Copyright © 2011-2022 走看看