zoukankan      html  css  js  c++  java
  • LeetCode:Triangle

             Given a triangle, find the minimum path sum from top to bottom. Each step you may


    move to adjacent numbers on the row below.


    For example, given the following triangle


    [
         [2],
        [3,4],
       [6,5,7],
      [4,1,8,3]
    ]
    


    The minimum path sum from top to bottom is 11 (i.e., 2 + 3 +5 +1 = 11).

    Note:

    Bonus point if you are able to do this using onlyO(n) extra space, wheren is the total number of


    rows in the triangle.


    解题思路:

           首先dp是非常easy想到的,用dp[i][j]表示到第i层j列的最小值,那么状态转移为:


    dp[i][j]=min(dp[i-1][j],dp[i-1][j-1])+triangle[i][j] ( 0 < j < triangle[i].size() - 1).因为状态转移仅仅与i和i-1


    行有关,所以用滚动数组能将其内存优化为O(n)(此处有常系数2).关于内存的优化,事实上是能够做


    到严格的O(n)的,我们通过反向更新就可以实现.


    解题代码:

    class Solution {
    public:
        int minimumTotal(vector<vector<int> > &triangle) 
        {
            const int n = triangle.size();
            int dp[n];
            dp[0] = triangle[0][0];
            for (int i = 1; i < n; ++i)
            {
                for (int j = triangle[i].size() - 1; j >= 0 ; --j)
                {
                    if (j == triangle[i].size() - 1 || !j)
                        dp[j] = (!j ? dp[0] : dp[j-1]) + triangle[i][j];
                    else
                        dp[j] = min(dp[j],dp[j-1]) + triangle[i][j];
                }
            }
            return *min_element(dp,dp+n);
        }
    };
    


    更简单的代码:

    class Solution {
    public:
        int minimumTotal(vector<vector<int> > &triangle) 
        {
            const int n = triangle.size();
            int dp[n];
            for (int i = n -1; i >= 0; --i)
                dp[i] = triangle[n-1][i];
            for (int i = n -2; i >= 0; --i)
                for (int j = 0; j < triangle[i].size(); ++j)
                    dp[j] = min(dp[j],dp[j+1]) + triangle[i][j];
            return dp[0];
        }
    };
    


  • 相关阅读:
    排序
    wine-qq 安装
    逆元模板
    最长上升子序列
    SGU[115] Calendar
    SGU[123] The sum
    SGU[105] Div 3
    SGU[102] Coprimes
    SGU[100] A+B
    poj-1325-Machine Schedule
  • 原文地址:https://www.cnblogs.com/mfrbuaa/p/3810000.html
Copyright © 2011-2022 走看看