zoukankan      html  css  js  c++  java
  • poj3070--Fibonacci(矩阵的高速幂)

    Fibonacci
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 9650   Accepted: 6856

    Description

    In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

    0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

    An alternative formula for the Fibonacci sequence is

    .

    Given an integer n, your goal is to compute the last 4 digits of Fn.

    Input

    The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.

    Output

    For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).

    Sample Input

    0
    9
    999999999
    1000000000
    -1

    Sample Output

    0
    34
    626
    6875

    Hint

    As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by

    .

    Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:

    .

    Source

    和普通的高速幂的写法同样,不同的是须要计算矩阵相乘,仅仅要写对矩阵的乘法,就没难度了
     
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    #define LL long long
    struct node{
        LL s11 , s12 , s21 , s22 ;
    };
    node f(node a,node b)
    {
        node p ;
        p.s11 = (a.s11*b.s11 + a.s12*b.s21)%10000 ;
        p.s12 = (a.s11*b.s12 + a.s12*b.s22)%10000 ;
        p.s21 = (a.s21*b.s11 + a.s22*b.s21)%10000 ;
        p.s22 = (a.s21*b.s12 + a.s22*b.s22)%10000 ;
        return p ;
    }
    node pow(node p,int n)
    {
        node q ;
        q.s11 = q.s22 = 1 ;
        q.s12 = q.s21 = 0 ;
        if(n == 0)
            return q ;
        q = pow(p,n/2);
        q = f(q,q);
        if( n%2 )
            q = f(q,p);
        return q ;
    }
    int main()
    {
        int n ;
        node p ;
        while(scanf("%d", &n) && n != -1)
        {
            p.s11 = p.s12 = p.s21 = 1 ;
            p.s22 = 0 ;
            p = pow(p,n);
            printf("%d
    ", p.s12);
        }
        return 0;
    }
    

  • 相关阅读:
    前后端分离的坑
    appscan 对于csrf漏洞扫描的坑
    appscan执行过程
    app scan状态码的坑
    linux修改jdk版本
    软件测试之性能测试
    jmeter 从文件中读取内容 CSV数据文件设置(CSV Data Set Config)
    robotframework基本操作
    robotframework生成随机数
    RobotFramework获取table的行数
  • 原文地址:https://www.cnblogs.com/mfrbuaa/p/4283156.html
Copyright © 2011-2022 走看看