这道题目。运营商做数学题?算上两个子主题做?顶多算一个水主要议题...
首先,没有实际的二分法,但是,我们发现了一个新的解决方案,以取代二分法。
若果按照i从0,每次添加0.00000001我一直枚举h如果,绝对逼暂停。枚举太大
然而,它可以分为两个步骤:
#include<cstdio> #include<cmath> #define pai acos(-1.0) double r1,r2,h,v; double get_v(double temp) { double rr=r1+(r2-r1)*temp/h; return pai*temp*(r1*r1+rr*rr+r1*rr)/3; } int main() { int t; scanf("%d",&t); while(t--) { scanf("%lf%lf%lf%lf",&r1,&r2,&h,&v); double i; for(i=0;i<100;i+=0.0001) { if(get_v(i)>v) break; } double j; for(j=i-0.0001;j<=i;j+=0.00000001) { if(get_v(j)>v) break; } printf("%.6lf ",j); } return 0; }
尽管时间久了一点,单这道题的数据是能够过得。
自己想到方法解决这个问题,非常开心。
以下是迪神一下子就想到的二分解法,说来迪神也真是牛逼……在我们这样的菜鸟云集的地方。应该算的上是鹤立鸡群了。。。
#include<iostream> #include<algorithm> #include<cstring> #include<cstdio> #include<cmath> using namespace std; #define PI acos(-1.0) double r,R,H,v,m,x,y; int L() { if((PI * m * (r*r + r*((R-r)/H*m+r) + ((R-r)/H*m+r)*((R-r)/H*m+r))/3-v)>1e-7) return 1; else return 0; } int main() { int T; cin>>T; while(T--) { cin>>r>>R>>H>>v; x=0,y=H; while((y-x)>1e-7) { m=x+(y-x)/2; if(L()) y=m; else x=m; } printf("%.6lf ",x); } }
就是这个样子,打电话久了会困……它被证明是真实的。。。
版权声明:转载请注明出处凯撒...http://blog.csdn.net/u013382399