zoukankan      html  css  js  c++  java
  • POJ 3264-Balanced Lineup(段树:单点更新,间隔查询)

    Balanced Lineup
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 34522   Accepted: 16224
    Case Time Limit: 2000MS

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    Source

    经ysj一说我也准备噜线段树了 那天下午他来给我讲了一下线段树。先敲个模板再说。。

    题意是找某个区间的最大值和最小值的差值。

    #include <cstdio>
    #include <iostream>
    #include <algorithm>
    #include <cstring>
    #include <cctype>
    #include <cmath>
    #include <cstdlib>
    #include <vector>
    #include <queue>
    #include <set>
    #include <map>
    #include <list>
    #define LL long long
    using namespace std;
    const int INF=1<<27;
    const int maxn=200010;
    LL minn[maxn],maxx[maxn];
    void update(LL root,LL l,LL r,LL p,LL v)//单点更新
    {
    	if(l==r) maxx[root]=v;minn[root]=v;
    	if(l<r)
    	{
    		LL mid=(l+r)/2;
    		if(p<=mid) update(root*2,l,mid,p,v);
    		else update(root*2+1,mid+1,r,p,v);
    		maxx[root]=max(maxx[root*2],maxx[root*2+1]);
    		minn[root]=min(minn[root*2],minn[root*2+1]);
    	}
    }
    LL query_min(LL root,LL l,LL r,LL ql,LL qr)
    {
    	LL mid=(l+r)/2,ans=INF;
    	if(ql<=l&&qr>=r) return minn[root];
    	if(ql<=mid) ans=min(ans,query_min(root*2,l,mid,ql,qr));
    	if(qr>mid) ans=min(ans,query_min(root*2+1,mid+1,r,ql,qr));
    	return ans;
    }
    LL query_max(LL root,LL l,LL r,LL ql,LL qr)
    {
    	LL mid=(l+r)/2,ans=-INF;
    	if(ql<=l&&qr>=r) return maxx[root];
    	if(ql<=mid) ans=max(ans,query_max(root*2,l,mid,ql,qr));
    	if(qr>mid) ans=max(ans,query_max(root*2+1,mid+1,r,ql,qr));
    	return ans;
    }
    int main()
    {
      int N,Q,i,v;
      while(~scanf("%lld%lld",&N,&Q))
      {
      	for(i=1;i<=N;i++)
    	{
    		scanf("%lld",&v);
    		update(1,1,N,i,v);
    	}
    	while(Q--)
    	{
    		int ql,qr;
    		scanf("%lld%lld",&ql,&qr);
    		printf("%lld
    ",query_max(1,1,N,ql,qr)-query_min(1,1,N,ql,qr));
    	}
      }
      return 0;
    }
    


  • 相关阅读:
    Linux下串口编程入门
    arm-linux-gdb+gdbserver环境搭建以及远程调试
    google jib容器打包工具
    docker入门——构建镜像
    Docker搭建MySQL服务
    docker基本操作
    Docker 使用指南—— 基本操作
    使用docker Maven插件本地构建docker镜像并发布到远程服务器
    10张图带你深入理解Docker容器和镜像
    springboot+Jib+Maven+Idea+Docker 实践
  • 原文地址:https://www.cnblogs.com/mfrbuaa/p/5041618.html
Copyright © 2011-2022 走看看