zoukankan      html  css  js  c++  java
  • Codeforces Round #271 (Div. 2)

    D. Flowers
    time limit per test
    1.5 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    We saw the little game Marmot made for Mole's lunch. Now it's Marmot's dinner time and, as we all know, Marmot eats flowers. At every dinner he eats some red and white flowers. Therefore a dinner can be represented as a sequence of several flowers, some of them white and some of them red.

    But, for a dinner to be tasty, there is a rule: Marmot wants to eat white flowers only in groups of size k.

    Now Marmot wonders in how many ways he can eat between a and b flowers. As the number of ways could be very large, print it modulo1000000007 (109 + 7).

    Input

    Input contains several test cases.

    The first line contains two integers t and k (1 ≤ t, k ≤ 105), where t represents the number of test cases.

    The next t lines contain two integers ai and bi (1 ≤ ai ≤ bi ≤ 105), describing the i-th test.

    Output

    Print t lines to the standard output. The i-th line should contain the number of ways in which Marmot can eat between ai and bi flowers at dinner modulo 1000000007 (109 + 7).

    Sample test(s)
    input
    3 2
    1 3
    2 3
    4 4
    
    output
    6
    5
    5
    
    Note
    • For K = 2 and length 1 Marmot can eat (R).
    • For K = 2 and length 2 Marmot can eat (RR) and (WW).
    • For K = 2 and length 3 Marmot can eat (RRR), (RWW) and (WWR).
    • For K = 2 and length 4 Marmot can eat, for example, (WWWW) or (RWWR), but for example he can't eat (WWWR).

    我理解题目的能力实在太差了,一个小时都没看懂题目.....真不知道我四级是怎么过的....

    题意:

    一个由‘R’和‘W’构成的字符串中,w仅仅能以连续k个存在。比如k=2。长度为4合法的字符串仅仅有 RRWW   WWRR   WWWW RWWR RRRR,给出两个长度值a,b,问长度为[a,b]的串中合法的字符串有多少个。dp[i]第i位有多少种字符串,当第i位选R时则dp[i]=dp[i-1],当第i位选W时则dp[i]=dp[i-k],所以转移方程为dp[i]=dp[i-1]+dp[i-k]

    感悟:

    尽管这个dp不难,可是还是从不断WA,不断TLE中学到了非常多,预处理使得o(n^2)算法降为o(n),主要是查询的时候变为o(1)!

    先附上TLE代码:

            int t,k;
            cin>>t>>k;
            dp[0] = 1;
            for(int i =1; i <= 100000+5; i++)
            {
                if(i < k)  {
                    dp[i] = 1;
                    sum[i] = sum[i-1] +1;
                }
                else if(i == k)
                    dp[k] = 2;
                else dp[i] = (dp[i-1] + dp[i - k])%mod;
            }
    
            while(t--)
            {
                 int a,b;
                 //cin>>a>>b;
                 scanf("%d%d",&a,&b);
                 LL sum = 0;
                 for(int i = a; i <= b; i++)//这里最多会取t*(a-b)次模,相当于n^2,10^10,居然没注意这是个o(n^2)的算法,我也是醉了QAQ
                 {
                     sum += dp[i];
                     sum %= mod;
                 }
                cout<<sum<<endl;
    
            }
    AC代码

    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<cstring>
    #include <algorithm>
    #define LL  long long
    const int mod = 1e9+7;
    const int  maxn = 2000000+10;
    using namespace std;
    LL dp[maxn];
    LL sum[maxn];
    int main()
    {
    
            int t,k;
            cin>>t>>k;
            dp[0] = 1;
            sum[0] = 0;
            for(int i = 1; i < k; i++)
            {
                dp[i] = 1;
                sum[i] = sum[i-1] + dp[i];
            }
            for(int i =k; i <= 100000+5; i++)
            {
                        dp[i] = (dp[i-1] + dp[i - k])%mod;
                        sum[i] = sum[i-1] + dp[i];
                        sum[i] %= mod;
            }
            while(t--)
            {
                 int a,b;
               cin>>a>>b;
              cout<<(sum[b] - sum[a-1]+mod)%mod<<endl;//注意这里我也WA了好几发,sum[b]-sum[a-1]有可能是负数,由于一開始取模了有肯能取摸 后sum[b]<sum[a-1],比方b = 10006,a = 1005,b%10006 < a%10006,所以要加个mod
    
            }
        return 0;
    }
    

    从这到简单的dp涨了不少姿势,233333



  • 相关阅读:
    鸿蒙的js开发模式19:鸿蒙手机下载python服务器端文件的实现
    【资源下载】Linux下的Hi3861一站式鸿蒙开发烧录(附工具)
    并发编程大扫盲:带你了解何为线程上下文切换
    内存溢出 MAT 排查工具,它真香香香
    面试官问:如何排除GC引起的CPU飙高?我脱口而出5个步骤
    小学妹问我:如何利用可视化工具排查问题?
    你不得不知的6个JDK自带JVM调优工具
    那个小白还没搞懂内存溢出,只能用案例说给他听了
    听说同学你搞不懂Spring Boot集成Mybatis的玩法,田哥来教你
    手把手教你设置JVM调优参数
  • 原文地址:https://www.cnblogs.com/mfrbuaa/p/5167967.html
Copyright © 2011-2022 走看看