zoukankan      html  css  js  c++  java
  • [caffe]深度学习之图像分类模型AlexNet解读

    在imagenet上的图像分类challenge上Alex提出的alexnet网络结构模型赢得了2012届的冠军。要研究CNN类型DL网络模型在图像分类上的应用,就逃不开研究alexnet。这是CNN在图像分类上的经典模型(DL火起来之后)。

    在DL开源实现caffe的model例子中。它也给出了alexnet的复现。详细网络配置文件例如以下https://github.com/BVLC/caffe/blob/master/models/bvlc_reference_caffenet/train_val.prototxt

    接下来本文将一步步对该网络配置结构中各个层进行具体的解读(训练阶段):

    1. conv1阶段DFD(data flow diagram):


    2. conv2阶段DFD(data flow diagram):


    3. conv3阶段DFD(data flow diagram):


    4. conv4阶段DFD(data flow diagram):


    5. conv5阶段DFD(data flow diagram):


    6. fc6阶段DFD(data flow diagram):


    7. fc7阶段DFD(data flow diagram):


    8. fc8阶段DFD(data flow diagram):



    各种layer的operation很多其它解释能够參考http://caffe.berkeleyvision.org/tutorial/layers.html

    从计算该模型的数据流过程中。该模型參数大概5kw+。

    caffe的输出中也有包括这块的内容日志,详情例如以下:

    I0721 10:38:15.326920  4692 net.cpp:125] Top shape: 256 3 227 227 (39574272)
    I0721 10:38:15.326971  4692 net.cpp:125] Top shape: 256 1 1 1 (256)
    I0721 10:38:15.326982  4692 net.cpp:156] data does not need backward computation.
    I0721 10:38:15.327003  4692 net.cpp:74] Creating Layer conv1
    I0721 10:38:15.327011  4692 net.cpp:84] conv1 <- data
    I0721 10:38:15.327033  4692 net.cpp:110] conv1 -> conv1
    I0721 10:38:16.721956  4692 net.cpp:125] Top shape: 256 96 55 55 (74342400)
    I0721 10:38:16.722030  4692 net.cpp:151] conv1 needs backward computation.
    I0721 10:38:16.722059  4692 net.cpp:74] Creating Layer relu1
    I0721 10:38:16.722070  4692 net.cpp:84] relu1 <- conv1
    I0721 10:38:16.722082  4692 net.cpp:98] relu1 -> conv1 (in-place)
    I0721 10:38:16.722096  4692 net.cpp:125] Top shape: 256 96 55 55 (74342400)
    I0721 10:38:16.722105  4692 net.cpp:151] relu1 needs backward computation.
    I0721 10:38:16.722116  4692 net.cpp:74] Creating Layer pool1
    I0721 10:38:16.722125  4692 net.cpp:84] pool1 <- conv1
    I0721 10:38:16.722133  4692 net.cpp:110] pool1 -> pool1
    I0721 10:38:16.722167  4692 net.cpp:125] Top shape: 256 96 27 27 (17915904)
    I0721 10:38:16.722187  4692 net.cpp:151] pool1 needs backward computation.
    I0721 10:38:16.722205  4692 net.cpp:74] Creating Layer norm1
    I0721 10:38:16.722221  4692 net.cpp:84] norm1 <- pool1
    I0721 10:38:16.722234  4692 net.cpp:110] norm1 -> norm1
    I0721 10:38:16.722251  4692 net.cpp:125] Top shape: 256 96 27 27 (17915904)
    I0721 10:38:16.722260  4692 net.cpp:151] norm1 needs backward computation.
    I0721 10:38:16.722272  4692 net.cpp:74] Creating Layer conv2
    I0721 10:38:16.722280  4692 net.cpp:84] conv2 <- norm1
    I0721 10:38:16.722290  4692 net.cpp:110] conv2 -> conv2
    I0721 10:38:16.725225  4692 net.cpp:125] Top shape: 256 256 27 27 (47775744)
    I0721 10:38:16.725242  4692 net.cpp:151] conv2 needs backward computation.
    I0721 10:38:16.725253  4692 net.cpp:74] Creating Layer relu2
    I0721 10:38:16.725261  4692 net.cpp:84] relu2 <- conv2
    I0721 10:38:16.725270  4692 net.cpp:98] relu2 -> conv2 (in-place)
    I0721 10:38:16.725280  4692 net.cpp:125] Top shape: 256 256 27 27 (47775744)
    I0721 10:38:16.725288  4692 net.cpp:151] relu2 needs backward computation.
    I0721 10:38:16.725298  4692 net.cpp:74] Creating Layer pool2
    I0721 10:38:16.725307  4692 net.cpp:84] pool2 <- conv2
    I0721 10:38:16.725317  4692 net.cpp:110] pool2 -> pool2
    I0721 10:38:16.725329  4692 net.cpp:125] Top shape: 256 256 13 13 (11075584)
    I0721 10:38:16.725338  4692 net.cpp:151] pool2 needs backward computation.
    I0721 10:38:16.725358  4692 net.cpp:74] Creating Layer norm2
    I0721 10:38:16.725368  4692 net.cpp:84] norm2 <- pool2
    I0721 10:38:16.725378  4692 net.cpp:110] norm2 -> norm2
    I0721 10:38:16.725389  4692 net.cpp:125] Top shape: 256 256 13 13 (11075584)
    I0721 10:38:16.725399  4692 net.cpp:151] norm2 needs backward computation.
    I0721 10:38:16.725409  4692 net.cpp:74] Creating Layer conv3
    I0721 10:38:16.725419  4692 net.cpp:84] conv3 <- norm2
    I0721 10:38:16.725427  4692 net.cpp:110] conv3 -> conv3
    I0721 10:38:16.735193  4692 net.cpp:125] Top shape: 256 384 13 13 (16613376)
    I0721 10:38:16.735213  4692 net.cpp:151] conv3 needs backward computation.
    I0721 10:38:16.735224  4692 net.cpp:74] Creating Layer relu3
    I0721 10:38:16.735234  4692 net.cpp:84] relu3 <- conv3
    I0721 10:38:16.735242  4692 net.cpp:98] relu3 -> conv3 (in-place)
    I0721 10:38:16.735250  4692 net.cpp:125] Top shape: 256 384 13 13 (16613376)
    I0721 10:38:16.735258  4692 net.cpp:151] relu3 needs backward computation.
    I0721 10:38:16.735302  4692 net.cpp:74] Creating Layer conv4
    I0721 10:38:16.735312  4692 net.cpp:84] conv4 <- conv3
    I0721 10:38:16.735321  4692 net.cpp:110] conv4 -> conv4
    I0721 10:38:16.743952  4692 net.cpp:125] Top shape: 256 384 13 13 (16613376)
    I0721 10:38:16.743988  4692 net.cpp:151] conv4 needs backward computation.
    I0721 10:38:16.744000  4692 net.cpp:74] Creating Layer relu4
    I0721 10:38:16.744010  4692 net.cpp:84] relu4 <- conv4
    I0721 10:38:16.744020  4692 net.cpp:98] relu4 -> conv4 (in-place)
    I0721 10:38:16.744030  4692 net.cpp:125] Top shape: 256 384 13 13 (16613376)
    I0721 10:38:16.744038  4692 net.cpp:151] relu4 needs backward computation.
    I0721 10:38:16.744050  4692 net.cpp:74] Creating Layer conv5
    I0721 10:38:16.744057  4692 net.cpp:84] conv5 <- conv4
    I0721 10:38:16.744067  4692 net.cpp:110] conv5 -> conv5
    I0721 10:38:16.748935  4692 net.cpp:125] Top shape: 256 256 13 13 (11075584)
    I0721 10:38:16.748955  4692 net.cpp:151] conv5 needs backward computation.
    I0721 10:38:16.748965  4692 net.cpp:74] Creating Layer relu5
    I0721 10:38:16.748975  4692 net.cpp:84] relu5 <- conv5
    I0721 10:38:16.748983  4692 net.cpp:98] relu5 -> conv5 (in-place)
    I0721 10:38:16.748998  4692 net.cpp:125] Top shape: 256 256 13 13 (11075584)
    I0721 10:38:16.749011  4692 net.cpp:151] relu5 needs backward computation.
    I0721 10:38:16.749022  4692 net.cpp:74] Creating Layer pool5
    I0721 10:38:16.749030  4692 net.cpp:84] pool5 <- conv5
    I0721 10:38:16.749039  4692 net.cpp:110] pool5 -> pool5
    I0721 10:38:16.749050  4692 net.cpp:125] Top shape: 256 256 6 6 (2359296)
    I0721 10:38:16.749058  4692 net.cpp:151] pool5 needs backward computation.
    I0721 10:38:16.749074  4692 net.cpp:74] Creating Layer fc6
    I0721 10:38:16.749083  4692 net.cpp:84] fc6 <- pool5
    I0721 10:38:16.749091  4692 net.cpp:110] fc6 -> fc6
    I0721 10:38:17.160079  4692 net.cpp:125] Top shape: 256 4096 1 1 (1048576)
    I0721 10:38:17.160148  4692 net.cpp:151] fc6 needs backward computation.
    I0721 10:38:17.160166  4692 net.cpp:74] Creating Layer relu6
    I0721 10:38:17.160177  4692 net.cpp:84] relu6 <- fc6
    I0721 10:38:17.160190  4692 net.cpp:98] relu6 -> fc6 (in-place)
    I0721 10:38:17.160202  4692 net.cpp:125] Top shape: 256 4096 1 1 (1048576)
    I0721 10:38:17.160212  4692 net.cpp:151] relu6 needs backward computation.
    I0721 10:38:17.160222  4692 net.cpp:74] Creating Layer drop6
    I0721 10:38:17.160230  4692 net.cpp:84] drop6 <- fc6
    I0721 10:38:17.160238  4692 net.cpp:98] drop6 -> fc6 (in-place)
    I0721 10:38:17.160258  4692 net.cpp:125] Top shape: 256 4096 1 1 (1048576)
    I0721 10:38:17.160265  4692 net.cpp:151] drop6 needs backward computation.
    I0721 10:38:17.160277  4692 net.cpp:74] Creating Layer fc7
    I0721 10:38:17.160286  4692 net.cpp:84] fc7 <- fc6
    I0721 10:38:17.160295  4692 net.cpp:110] fc7 -> fc7
    I0721 10:38:17.342094  4692 net.cpp:125] Top shape: 256 4096 1 1 (1048576)
    I0721 10:38:17.342157  4692 net.cpp:151] fc7 needs backward computation.
    I0721 10:38:17.342175  4692 net.cpp:74] Creating Layer relu7
    I0721 10:38:17.342185  4692 net.cpp:84] relu7 <- fc7
    I0721 10:38:17.342198  4692 net.cpp:98] relu7 -> fc7 (in-place)
    I0721 10:38:17.342208  4692 net.cpp:125] Top shape: 256 4096 1 1 (1048576)
    I0721 10:38:17.342217  4692 net.cpp:151] relu7 needs backward computation.
    I0721 10:38:17.342228  4692 net.cpp:74] Creating Layer drop7
    I0721 10:38:17.342236  4692 net.cpp:84] drop7 <- fc7
    I0721 10:38:17.342245  4692 net.cpp:98] drop7 -> fc7 (in-place)
    I0721 10:38:17.342254  4692 net.cpp:125] Top shape: 256 4096 1 1 (1048576)
    I0721 10:38:17.342262  4692 net.cpp:151] drop7 needs backward computation.
    I0721 10:38:17.342274  4692 net.cpp:74] Creating Layer fc8
    I0721 10:38:17.342283  4692 net.cpp:84] fc8 <- fc7
    I0721 10:38:17.342291  4692 net.cpp:110] fc8 -> fc8
    I0721 10:38:17.343199  4692 net.cpp:125] Top shape: 256 22 1 1 (5632)
    I0721 10:38:17.343214  4692 net.cpp:151] fc8 needs backward computation.
    I0721 10:38:17.343231  4692 net.cpp:74] Creating Layer loss
    I0721 10:38:17.343240  4692 net.cpp:84] loss <- fc8
    I0721 10:38:17.343250  4692 net.cpp:84] loss <- label
    I0721 10:38:17.343264  4692 net.cpp:151] loss needs backward computation.
    I0721 10:38:17.343305  4692 net.cpp:173] Collecting Learning Rate and Weight Decay.
    I0721 10:38:17.343327  4692 net.cpp:166] Network initialization done.
    I0721 10:38:17.343335  4692 net.cpp:167] Memory required for Data 1073760256


  • 相关阅读:
    【WPF学习】第六十二章 构建更复杂的模板
    【WPF学习】第六十一章 组织模板资源
    【WPF学习】第六十章 创建控件模板
    【WPF学习】第五十九章 理解控件模板
    Fast-Rcnn论文翻译
    在pytorch下使用tensorboardX(win10;谷歌浏览器;jupyter notebook)
    win10下cuda安装以及利用anaconda安装pytorch-gpu过程
    JS this的指向
    JS promise对象
    JS 正则表达式
  • 原文地址:https://www.cnblogs.com/mfrbuaa/p/5224992.html
Copyright © 2011-2022 走看看