zoukankan      html  css  js  c++  java
  • Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1

    3、Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1

    http://blog.csdn.net/sunbow0

    Spark MLlib Deep Learning工具箱,是依据现有深度学习教程《UFLDL教程》中的算法。在SparkMLlib中的实现。详细Spark MLlib Deep Learning(深度学习)文件夹结构:

    第一章Neural Net(NN)

    1、源代码

    2、源代码解析

    3、实例

    第二章Deep Belief Nets(DBNs)

    1、源代码

    2、源代码解析

    3、实例

    第三章Convolution Neural Network(CNN)

    1、源代码

    2、源代码解析

    3、实例

    第四章 Stacked Auto-Encoders(SAE)

    第五章CAE


    第三章Convolution Neural Network (卷积神经网络)

    1 源代码

    眼下SparkMLlib Deep Learning工具箱源代码的github地址为:

    https://github.com/sunbow1/SparkMLlibDeepLearn

    1.1 CNN代码 

    package CNN
    
    import org.apache.spark._
    import org.apache.spark.SparkContext._
    import org.apache.spark.rdd.RDD
    import org.apache.spark.Logging
    import org.apache.spark.mllib.regression.LabeledPoint
    import org.apache.spark.mllib.linalg._
    import org.apache.spark.mllib.linalg.distributed.RowMatrix
    
    import breeze.linalg.{
      Matrix => BM,
      CSCMatrix => BSM,
      DenseMatrix => BDM,
      Vector => BV,
      DenseVector => BDV,
      SparseVector => BSV,
      axpy => brzAxpy,
      svd => brzSvd,
      accumulate => Accumulate,
      rot90 => Rot90,
      sum => Bsum
    }
    import breeze.numerics.{
      exp => Bexp,
      tanh => Btanh
    }
    
    import scala.collection.mutable.ArrayBuffer
    import java.util.Random
    import scala.math._
    
    /**
     * types:网络层类别
     * outputmaps:特征map数量
     * kernelsize:卷积核k大小
     * k: 卷积核
     * b: 偏置
     * dk: 卷积核的偏导
     * db: 偏置的偏导
     * scale: pooling大小
     */
    case class CNNLayers(
      types: String,
      outputmaps: Double,
      kernelsize: Double,
      scale: Double,
      k: Array[Array[BDM[Double]]],
      b: Array[Double],
      dk: Array[Array[BDM[Double]]],
      db: Array[Double]) extends Serializable
    
    /**
     * CNN(convolution neural network)卷积神经网络
     */
    
    class CNN(
      private var mapsize: BDM[Double],
      private var types: Array[String],
      private var layer: Int,
      private var onum: Int,
      private var outputmaps: Array[Double],
      private var kernelsize: Array[Double],
      private var scale: Array[Double],
      private var alpha: Double,
      private var batchsize: Double,
      private var numepochs: Double) extends Serializable with Logging {
    //        var mapsize = new BDM(1, 2, Array(28.0, 28.0))
    //        var types = Array("i", "c", "s", "c", "s")
    //        var layer = 5
    //        var onum = 10  
    //        var outputmaps = Array(0.0, 6.0, 0.0, 12.0, 0.0)
    //        var kernelsize = Array(0.0, 5.0, 0.0, 5.0, 0.0)
    //        var scale = Array(0.0, 0.0, 2.0, 0.0, 2.0)
    //        var alpha = 1.0
    //        var batchsize = 50.0
    //        var numepochs = 1.0
    
      def this() = this(new BDM(1, 2, Array(28.0, 28.0)),
        Array("i", "c", "s", "c", "s"), 5, 10,
        Array(0.0, 6.0, 0.0, 12.0, 0.0),
        Array(0.0, 5.0, 0.0, 5.0, 0.0),
        Array(0.0, 0.0, 2.0, 0.0, 2.0),
        1.0, 50.0, 1.0)
    
      /** 设置输入层大小. Default: [28, 28]. */
      def setMapsize(mapsize: BDM[Double]): this.type = {
        this.mapsize = mapsize
        this
      }
    
      /** 设置网络层类别. Default: [1"i", "c", "s", "c", "s"]. */
      def setTypes(types: Array[String]): this.type = {
        this.types = types
        this
      }
    
      /** 设置网络层数. Default: 5. */
      def setLayer(layer: Int): this.type = {
        this.layer = layer
        this
      }
    
      /** 设置输出维度. Default: 10. */
      def setOnum(onum: Int): this.type = {
        this.onum = onum
        this
      }
    
      /** 设置特征map数量. Default: [0.0, 6.0, 0.0, 12.0, 0.0]. */
      def setOutputmaps(outputmaps: Array[Double]): this.type = {
        this.outputmaps = outputmaps
        this
      }
    
      /** 设置卷积核k大小. Default: [0.0, 5.0, 0.0, 5.0, 0.0]. */
      def setKernelsize(kernelsize: Array[Double]): this.type = {
        this.kernelsize = kernelsize
        this
      }
    
      /** 设置scale大小. Default: [0.0, 0.0, 2.0, 0.0, 2.0]. */
      def setScale(scale: Array[Double]): this.type = {
        this.scale = scale
        this
      }
    
      /** 设置学习因子. Default: 1. */
      def setAlpha(alpha: Double): this.type = {
        this.alpha = alpha
        this
      }
    
      /** 设置迭代大小. Default: 50. */
      def setBatchsize(batchsize: Double): this.type = {
        this.batchsize = batchsize
        this
      }
    
      /** 设置迭代次数. Default: 1. */
      def setNumepochs(numepochs: Double): this.type = {
        this.numepochs = numepochs
        this
      }
    
      /** 卷积神经网络层參数初始化. */
      def CnnSetup: (Array[CNNLayers], BDM[Double], BDM[Double], Double) = {
        var inputmaps1 = 1.0
        var mapsize1 = mapsize
        var confinit = ArrayBuffer[CNNLayers]()
        for (l <- 0 to layer - 1) { // layer
          val type1 = types(l)
          val outputmap1 = outputmaps(l)
          val kernelsize1 = kernelsize(l)
          val scale1 = scale(l)
          val layersconf = if (type1 == "s") { // 每一层參数初始化
            mapsize1 = mapsize1 / scale1
            val b1 = Array.fill(inputmaps1.toInt)(0.0)
            val ki = Array(Array(BDM.zeros[Double](1, 1)))
            new CNNLayers(type1, outputmap1, kernelsize1, scale1, ki, b1, ki, b1)
          } else if (type1 == "c") {
            mapsize1 = mapsize1 - kernelsize1 + 1.0
            val fan_out = outputmap1 * math.pow(kernelsize1, 2)
            val fan_in = inputmaps1 * math.pow(kernelsize1, 2)
            val ki = ArrayBuffer[Array[BDM[Double]]]()
            for (i <- 0 to inputmaps1.toInt - 1) { // input map
              val kj = ArrayBuffer[BDM[Double]]()
              for (j <- 0 to outputmap1.toInt - 1) { // output map          
                val kk = (BDM.rand[Double](kernelsize1.toInt, kernelsize1.toInt) - 0.5) * 2.0 * sqrt(6.0 / (fan_in + fan_out))
                kj += kk
              }
              ki += kj.toArray
            }
            val b1 = Array.fill(outputmap1.toInt)(0.0)
            inputmaps1 = outputmap1
            new CNNLayers(type1, outputmap1, kernelsize1, scale1, ki.toArray, b1, ki.toArray, b1)
          } else {
            val ki = Array(Array(BDM.zeros[Double](1, 1)))
            val b1 = Array(0.0)
            new CNNLayers(type1, outputmap1, kernelsize1, scale1, ki, b1, ki, b1)
          }
          confinit += layersconf
        }
        val fvnum = mapsize1(0, 0) * mapsize1(0, 1) * inputmaps1
        val ffb = BDM.zeros[Double](onum, 1)
        val ffW = (BDM.rand[Double](onum, fvnum.toInt) - 0.5) * 2.0 * sqrt(6.0 / (onum + fvnum))
        (confinit.toArray, ffb, ffW, alpha)
      }
    
      /**
       * 执行卷积神经网络算法.
       */
      def CNNtrain(train_d: RDD[(BDM[Double], BDM[Double])], opts: Array[Double]): CNNModel = {
        val sc = train_d.sparkContext
        var initStartTime = System.currentTimeMillis()
        var initEndTime = System.currentTimeMillis()
        // 參数初始化配置
        var (cnn_layers, cnn_ffb, cnn_ffW, cnn_alpha) = CnnSetup
        // 样本数据划分:训练数据、交叉检验数据
        val validation = opts(2)
        val splitW1 = Array(1.0 - validation, validation)
        val train_split1 = train_d.randomSplit(splitW1, System.nanoTime())
        val train_t = train_split1(0)
        val train_v = train_split1(1)
        // m:训练样本的数量
        val m = train_t.count
        // 计算batch的数量
        val batchsize = opts(0).toInt
        val numepochs = opts(1).toInt
        val numbatches = (m / batchsize).toInt
        var rL = Array.fill(numepochs * numbatches.toInt)(0.0)
        var n = 0
        // numepochs是循环的次数 
        for (i <- 1 to numepochs) {
          initStartTime = System.currentTimeMillis()
          val splitW2 = Array.fill(numbatches)(1.0 / numbatches)
          // 依据分组权重,随机划分每组样本数据  
          for (l <- 1 to numbatches) {
            // 权重 
            val bc_cnn_layers = sc.broadcast(cnn_layers)
            val bc_cnn_ffb = sc.broadcast(cnn_ffb)
            val bc_cnn_ffW = sc.broadcast(cnn_ffW)
    
            // 样本划分
            val train_split2 = train_t.randomSplit(splitW2, System.nanoTime())
            val batch_xy1 = train_split2(l - 1)
    
            // CNNff是进行前向传播
            // net = cnnff(net, batch_x);
            val train_cnnff = CNN.CNNff(batch_xy1, bc_cnn_layers, bc_cnn_ffb, bc_cnn_ffW)
    
            // CNNbp是后向传播
            // net = cnnbp(net, batch_y);
            val train_cnnbp = CNN.CNNbp(train_cnnff, bc_cnn_layers, bc_cnn_ffb, bc_cnn_ffW)
    
            // 权重更新
            //  net = cnnapplygrads(net, opts); 
            val train_nnapplygrads = CNN.CNNapplygrads(train_cnnbp, bc_cnn_ffb, bc_cnn_ffW, cnn_alpha)
            cnn_ffW = train_nnapplygrads._1
            cnn_ffb = train_nnapplygrads._2
            cnn_layers = train_nnapplygrads._3
    
            // error and loss
            // 输出误差计算
            // net.L = 1/2* sum(net.e(:) .^ 2) / size(net.e, 2);
            val rdd_loss1 = train_cnnbp._1.map(f => f._5)
            val (loss2, counte) = rdd_loss1.treeAggregate((0.0, 0L))(
              seqOp = (c, v) => {
                // c: (e, count), v: (m)
                val e1 = c._1
                val e2 = (v :* v).sum
                val esum = e1 + e2
                (esum, c._2 + 1)
              },
              combOp = (c1, c2) => {
                // c: (e, count)
                val e1 = c1._1
                val e2 = c2._1
                val esum = e1 + e2
                (esum, c1._2 + c2._2)
              })
            val Loss = (loss2 / counte.toDouble) * 0.5
            if (n == 0) {
              rL(n) = Loss
            } else {
              rL(n) = 0.09 * rL(n - 1) + 0.01 * Loss
            }
            n = n + 1
          }
          initEndTime = System.currentTimeMillis()
          // 打印输出结果
          printf("epoch: numepochs = %d , Took = %d seconds; batch train mse = %f.
    ", i, scala.math.ceil((initEndTime - initStartTime).toDouble / 1000).toLong, rL(n - 1))
        }
        // 计算训练误差及交叉检验误差
        // Full-batch train mse
        var loss_train_e = 0.0
        var loss_val_e = 0.0
        loss_train_e = CNN.CNNeval(train_t, sc.broadcast(cnn_layers), sc.broadcast(cnn_ffb), sc.broadcast(cnn_ffW))
        if (validation > 0) loss_val_e = CNN.CNNeval(train_v, sc.broadcast(cnn_layers), sc.broadcast(cnn_ffb), sc.broadcast(cnn_ffW))
        printf("epoch: Full-batch train mse = %f, val mse = %f.
    ", loss_train_e, loss_val_e)
        new CNNModel(cnn_layers, cnn_ffW, cnn_ffb)
      }
    
    }
    
    /**
     * NN(neural network)
     */
    object CNN extends Serializable {
    
      // Initialization mode names
    
      /**
       * sigm激活函数
       * X = 1./(1+exp(-P));
       */
      def sigm(matrix: BDM[Double]): BDM[Double] = {
        val s1 = 1.0 / (Bexp(matrix * (-1.0)) + 1.0)
        s1
      }
    
      /**
       * tanh激活函数
       * f=1.7159*tanh(2/3.*A);
       */
      def tanh_opt(matrix: BDM[Double]): BDM[Double] = {
        val s1 = Btanh(matrix * (2.0 / 3.0)) * 1.7159
        s1
      }
    
      /**
       * 克罗内克积
       *
       */
      def expand(a: BDM[Double], s: Array[Int]): BDM[Double] = {
        // val a = BDM((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))
        // val s = Array(3, 2)
        val sa = Array(a.rows, a.cols)
        var tt = new Array[Array[Int]](sa.length)
        for (ii <- sa.length - 1 to 0 by -1) {
          var h = BDV.zeros[Int](sa(ii) * s(ii))
          h(0 to sa(ii) * s(ii) - 1 by s(ii)) := 1
          tt(ii) = Accumulate(h).data
        }
        var b = BDM.zeros[Double](tt(0).length, tt(1).length)
        for (j1 <- 0 to b.rows - 1) {
          for (j2 <- 0 to b.cols - 1) {
            b(j1, j2) = a(tt(0)(j1) - 1, tt(1)(j2) - 1)
          }
        }
        b
      }
    
      /**
       * convn卷积计算
       */
      def convn(m0: BDM[Double], k0: BDM[Double], shape: String): BDM[Double] = {
        //val m0 = BDM((1.0, 1.0, 1.0, 1.0), (0.0, 0.0, 1.0, 1.0), (0.0, 1.0, 1.0, 0.0), (0.0, 1.0, 1.0, 0.0))
        //val k0 = BDM((1.0, 1.0), (0.0, 1.0))
        //val m0 = BDM((1.0, 1.0, 1.0), (1.0, 1.0, 1.0), (1.0, 1.0, 1.0))
        //val k0 = BDM((1.0, 2.0, 3.0), (4.0, 5.0, 6.0), (7.0, 8.0, 9.0))    
        val out1 = shape match {
          case "valid" =>
            val m1 = m0
            val k1 = k0.t
            val row1 = m1.rows - k1.rows + 1
            val col1 = m1.cols - k1.cols + 1
            var m2 = BDM.zeros[Double](row1, col1)
            for (i <- 0 to row1 - 1) {
              for (j <- 0 to col1 - 1) {
                val r1 = i
                val r2 = r1 + k1.rows - 1
                val c1 = j
                val c2 = c1 + k1.cols - 1
                val mi = m1(r1 to r2, c1 to c2)
                m2(i, j) = (mi :* k1).sum
              }
            }
            m2
          case "full" =>
            var m1 = BDM.zeros[Double](m0.rows + 2 * (k0.rows - 1), m0.cols + 2 * (k0.cols - 1))
            for (i <- 0 to m0.rows - 1) {
              for (j <- 0 to m0.cols - 1) {
                m1((k0.rows - 1) + i, (k0.cols - 1) + j) = m0(i, j)
              }
            }
            val k1 = Rot90(Rot90(k0))
            val row1 = m1.rows - k1.rows + 1
            val col1 = m1.cols - k1.cols + 1
            var m2 = BDM.zeros[Double](row1, col1)
            for (i <- 0 to row1 - 1) {
              for (j <- 0 to col1 - 1) {
                val r1 = i
                val r2 = r1 + k1.rows - 1
                val c1 = j
                val c2 = c1 + k1.cols - 1
                val mi = m1(r1 to r2, c1 to c2)
                m2(i, j) = (mi :* k1).sum
              }
            }
            m2
        }
        out1
      }
    
      /**
       * cnnff是进行前向传播
       * 计算神经网络中的每一个节点的输出值;
       */
      def CNNff(
        batch_xy1: RDD[(BDM[Double], BDM[Double])],
        bc_cnn_layers: org.apache.spark.broadcast.Broadcast[Array[CNNLayers]],
        bc_cnn_ffb: org.apache.spark.broadcast.Broadcast[BDM[Double]],
        bc_cnn_ffW: org.apache.spark.broadcast.Broadcast[BDM[Double]]): RDD[(BDM[Double], Array[Array[BDM[Double]]], BDM[Double], BDM[Double])] = {
        // 第1层:a(1)=[x]
        val train_data1 = batch_xy1.map { f =>
          val lable = f._1
          val features = f._2
          val nna1 = Array(features)
          val nna = ArrayBuffer[Array[BDM[Double]]]()
          nna += nna1
          (lable, nna)
        }
        // 第2至n-1层计算
        val train_data2 = train_data1.map { f =>
          val lable = f._1
          val nn_a = f._2
          var inputmaps1 = 1.0
          val n = bc_cnn_layers.value.length
          // for each layer
          for (l <- 1 to n - 1) {
            val type1 = bc_cnn_layers.value(l).types
            val outputmap1 = bc_cnn_layers.value(l).outputmaps
            val kernelsize1 = bc_cnn_layers.value(l).kernelsize
            val scale1 = bc_cnn_layers.value(l).scale
            val k1 = bc_cnn_layers.value(l).k
            val b1 = bc_cnn_layers.value(l).b
            val nna1 = ArrayBuffer[BDM[Double]]()
            if (type1 == "c") {
              for (j <- 0 to outputmap1.toInt - 1) { // output map 
                // create temp output map
                var z = BDM.zeros[Double](nn_a(l - 1)(0).rows - kernelsize1.toInt + 1, nn_a(l - 1)(0).cols - kernelsize1.toInt + 1)
                for (i <- 0 to inputmaps1.toInt - 1) { // input map
                  // convolve with corresponding kernel and add to temp output map
                  // z = z + convn(net.layers{l - 1}.a{i}, net.layers{l}.k{i}{j}, 'valid');
                  z = z + convn(nn_a(l - 1)(i), k1(i)(j), "valid")
                }
                // add bias, pass through nonlinearity
                // net.layers{l}.a{j} = sigm(z + net.layers{l}.b{j})
                val nna0 = sigm(z + b1(j))
                nna1 += nna0
              }
              nn_a += nna1.toArray
              inputmaps1 = outputmap1
            } else if (type1 == "s") {
              for (j <- 0 to inputmaps1.toInt - 1) {
                // z = convn(net.layers{l - 1}.a{j}, ones(net.layers{l}.scale) / (net.layers{l}.scale ^ 2), 'valid'); replace with variable
                // net.layers{l}.a{j} = z(1 : net.layers{l}.scale : end, 1 : net.layers{l}.scale : end, :);
                val z = convn(nn_a(l - 1)(j), BDM.ones[Double](scale1.toInt, scale1.toInt) / (scale1 * scale1), "valid")
                val zs1 = z(::, 0 to -1 by scale1.toInt).t + 0.0
                val zs2 = zs1(::, 0 to -1 by scale1.toInt).t + 0.0
                val nna0 = zs2
                nna1 += nna0
              }
              nn_a += nna1.toArray
            }
          }
          // concatenate all end layer feature maps into vector
          val nn_fv1 = ArrayBuffer[Double]()
          for (j <- 0 to nn_a(n - 1).length - 1) {
            nn_fv1 ++= nn_a(n - 1)(j).data
          }
          val nn_fv = new BDM[Double](nn_fv1.length, 1, nn_fv1.toArray)
          // feedforward into output perceptrons
          // net.o = sigm(net.ffW * net.fv + repmat(net.ffb, 1, size(net.fv, 2)));
          val nn_o = sigm(bc_cnn_ffW.value * nn_fv + bc_cnn_ffb.value)
          (lable, nn_a.toArray, nn_fv, nn_o)
        }
        train_data2
      }
    
      /**
       * CNNbp是后向传播
       * 计算权重的平均偏导数
       */
      def CNNbp(
        train_cnnff: RDD[(BDM[Double], Array[Array[BDM[Double]]], BDM[Double], BDM[Double])],
        bc_cnn_layers: org.apache.spark.broadcast.Broadcast[Array[CNNLayers]],
        bc_cnn_ffb: org.apache.spark.broadcast.Broadcast[BDM[Double]],
        bc_cnn_ffW: org.apache.spark.broadcast.Broadcast[BDM[Double]]): (RDD[(BDM[Double], Array[Array[BDM[Double]]], BDM[Double], BDM[Double], BDM[Double], BDM[Double], BDM[Double], Array[Array[BDM[Double]]])], BDM[Double], BDM[Double], Array[CNNLayers]) = {
        // error : net.e = net.o - y
        val n = bc_cnn_layers.value.length
        val train_data3 = train_cnnff.map { f =>
          val nn_e = f._4 - f._1
          (f._1, f._2, f._3, f._4, nn_e)
        }
        // backprop deltas
        // 输出层的 灵敏度 或者 残差
        // net.od = net.e .* (net.o .* (1 - net.o))
        // net.fvd = (net.ffW' * net.od)
        val train_data4 = train_data3.map { f =>
          val nn_e = f._5
          val nn_o = f._4
          val nn_fv = f._3
          val nn_od = nn_e :* (nn_o :* (1.0 - nn_o))
          val nn_fvd = if (bc_cnn_layers.value(n - 1).types == "c") {
            // net.fvd = net.fvd .* (net.fv .* (1 - net.fv));
            val nn_fvd1 = bc_cnn_ffW.value.t * nn_od
            val nn_fvd2 = nn_fvd1 :* (nn_fv :* (1.0 - nn_fv))
            nn_fvd2
          } else {
            val nn_fvd1 = bc_cnn_ffW.value.t * nn_od
            nn_fvd1
          }
          (f._1, f._2, f._3, f._4, f._5, nn_od, nn_fvd)
        }
        // reshape feature vector deltas into output map style
        val sa1 = train_data4.map(f => f._2(n - 1)(1)).take(1)(0).rows
        val sa2 = train_data4.map(f => f._2(n - 1)(1)).take(1)(0).cols
        val sa3 = 1
        val fvnum = sa1 * sa2
    
        val train_data5 = train_data4.map { f =>
          val nn_a = f._2
          val nn_fvd = f._7
          val nn_od = f._6
          val nn_fv = f._3
          var nnd = new Array[Array[BDM[Double]]](n)
          val nnd1 = ArrayBuffer[BDM[Double]]()
          for (j <- 0 to nn_a(n - 1).length - 1) {
            val tmp1 = nn_fvd((j * fvnum) to ((j + 1) * fvnum - 1), 0)
            val tmp2 = new BDM(sa1, sa2, tmp1.data)
            nnd1 += tmp2
          }
          nnd(n - 1) = nnd1.toArray
          for (l <- (n - 2) to 0 by -1) {
            val type1 = bc_cnn_layers.value(l).types
            var nnd2 = ArrayBuffer[BDM[Double]]()
            if (type1 == "c") {
              for (j <- 0 to nn_a(l).length - 1) {
                val tmp_a = nn_a(l)(j)
                val tmp_d = nnd(l + 1)(j)
                val tmp_scale = bc_cnn_layers.value(l + 1).scale.toInt
                val tmp1 = tmp_a :* (1.0 - tmp_a)
                val tmp2 = expand(tmp_d, Array(tmp_scale, tmp_scale)) / (tmp_scale.toDouble * tmp_scale)
                nnd2 += (tmp1 :* tmp2)
              }
            } else if (type1 == "s") {
              for (i <- 0 to nn_a(l).length - 1) {
                var z = BDM.zeros[Double](nn_a(l)(0).rows, nn_a(l)(0).cols)
                for (j <- 0 to nn_a(l + 1).length - 1) {
                  // z = z + convn(net.layers{l + 1}.d{j}, rot180(net.layers{l + 1}.k{i}{j}), 'full');
                  z = z + convn(nnd(l + 1)(j), Rot90(Rot90(bc_cnn_layers.value(l + 1).k(i)(j))), "full")
                }
                nnd2 += z
              }
            }
            nnd(l) = nnd2.toArray
          }
          (f._1, f._2, f._3, f._4, f._5, f._6, f._7, nnd)
        }
        // dk db calc gradients
        var cnn_layers = bc_cnn_layers.value
        for (l <- 1 to n - 1) {
          val type1 = bc_cnn_layers.value(l).types
          val lena1 = train_data5.map(f => f._2(l).length).take(1)(0)
          val lena2 = train_data5.map(f => f._2(l - 1).length).take(1)(0)
          if (type1 == "c") {
            for (j <- 0 to lena1 - 1) {
              for (i <- 0 to lena2 - 1) {
                val rdd_dk_ij = train_data5.map { f =>
                  val nn_a = f._2
                  val nn_d = f._8
                  val tmp_d = nn_d(l)(j)
                  val tmp_a = nn_a(l - 1)(i)
                  convn(Rot90(Rot90(tmp_a)), tmp_d, "valid")
                }
                val initdk = BDM.zeros[Double](rdd_dk_ij.take(1)(0).rows, rdd_dk_ij.take(1)(0).cols)
                val (dk_ij, count_dk) = rdd_dk_ij.treeAggregate((initdk, 0L))(
                  seqOp = (c, v) => {
                    // c: (m, count), v: (m)
                    val m1 = c._1
                    val m2 = m1 + v
                    (m2, c._2 + 1)
                  },
                  combOp = (c1, c2) => {
                    // c: (m, count)
                    val m1 = c1._1
                    val m2 = c2._1
                    val m3 = m1 + m2
                    (m3, c1._2 + c2._2)
                  })
                val dk = dk_ij / count_dk.toDouble
                cnn_layers(l).dk(i)(j) = dk
              }
              val rdd_db_j = train_data5.map { f =>
                val nn_d = f._8
                val tmp_d = nn_d(l)(j)
                Bsum(tmp_d)
              }
              val db_j = rdd_db_j.reduce(_ + _)
              val count_db = rdd_db_j.count
              val db = db_j / count_db.toDouble
              cnn_layers(l).db(j) = db
            }
          }
        }
    
        // net.dffW = net.od * (net.fv)' / size(net.od, 2);
        // net.dffb = mean(net.od, 2);
        val train_data6 = train_data5.map { f =>
          val nn_od = f._6
          val nn_fv = f._3
          nn_od * nn_fv.t
        }
        val train_data7 = train_data5.map { f =>
          val nn_od = f._6
          nn_od
        }
        val initffW = BDM.zeros[Double](bc_cnn_ffW.value.rows, bc_cnn_ffW.value.cols)
        val (ffw2, countfffw2) = train_data6.treeAggregate((initffW, 0L))(
          seqOp = (c, v) => {
            // c: (m, count), v: (m)
            val m1 = c._1
            val m2 = m1 + v
            (m2, c._2 + 1)
          },
          combOp = (c1, c2) => {
            // c: (m, count)
            val m1 = c1._1
            val m2 = c2._1
            val m3 = m1 + m2
            (m3, c1._2 + c2._2)
          })
        val cnn_dffw = ffw2 / countfffw2.toDouble
        val initffb = BDM.zeros[Double](bc_cnn_ffb.value.rows, bc_cnn_ffb.value.cols)
        val (ffb2, countfffb2) = train_data7.treeAggregate((initffb, 0L))(
          seqOp = (c, v) => {
            // c: (m, count), v: (m)
            val m1 = c._1
            val m2 = m1 + v
            (m2, c._2 + 1)
          },
          combOp = (c1, c2) => {
            // c: (m, count)
            val m1 = c1._1
            val m2 = c2._1
            val m3 = m1 + m2
            (m3, c1._2 + c2._2)
          })
        val cnn_dffb = ffb2 / countfffb2.toDouble
        (train_data5, cnn_dffw, cnn_dffb, cnn_layers)
      }
    
      /**
       * NNapplygrads是权重更新
       * 权重更新
       */
      def CNNapplygrads(
        train_cnnbp: (RDD[(BDM[Double], Array[Array[BDM[Double]]], BDM[Double], BDM[Double], BDM[Double], BDM[Double], BDM[Double], Array[Array[BDM[Double]]])], BDM[Double], BDM[Double], Array[CNNLayers]),
        bc_cnn_ffb: org.apache.spark.broadcast.Broadcast[BDM[Double]],
        bc_cnn_ffW: org.apache.spark.broadcast.Broadcast[BDM[Double]],
        alpha: Double): (BDM[Double], BDM[Double], Array[CNNLayers]) = {
        val train_data5 = train_cnnbp._1
        val cnn_dffw = train_cnnbp._2
        val cnn_dffb = train_cnnbp._3
        var cnn_layers = train_cnnbp._4
        var cnn_ffb = bc_cnn_ffb.value
        var cnn_ffW = bc_cnn_ffW.value
        val n = cnn_layers.length
    
        for (l <- 1 to n - 1) {
          val type1 = cnn_layers(l).types
          val lena1 = train_data5.map(f => f._2(l).length).take(1)(0)
          val lena2 = train_data5.map(f => f._2(l - 1).length).take(1)(0)
          if (type1 == "c") {
            for (j <- 0 to lena1 - 1) {
              for (ii <- 0 to lena2 - 1) {
                cnn_layers(l).k(ii)(j) = cnn_layers(l).k(ii)(j) - cnn_layers(l).dk(ii)(j)
              }
              cnn_layers(l).b(j) = cnn_layers(l).b(j) - cnn_layers(l).db(j)
            }
          }
        }
        cnn_ffW = cnn_ffW + cnn_dffw
        cnn_ffb = cnn_ffb + cnn_dffb
        (cnn_ffW, cnn_ffb, cnn_layers)
      }
    
      /**
       * nneval是进行前向传播并计算输出误差
       * 计算神经网络中的每一个节点的输出值,并计算平均误差;
       */
      def CNNeval(
        batch_xy1: RDD[(BDM[Double], BDM[Double])],
        bc_cnn_layers: org.apache.spark.broadcast.Broadcast[Array[CNNLayers]],
        bc_cnn_ffb: org.apache.spark.broadcast.Broadcast[BDM[Double]],
        bc_cnn_ffW: org.apache.spark.broadcast.Broadcast[BDM[Double]]): Double = {
        // CNNff是进行前向传播    
        val train_cnnff = CNN.CNNff(batch_xy1, bc_cnn_layers, bc_cnn_ffb, bc_cnn_ffW)
        // error and loss
        // 输出误差计算
        val rdd_loss1 = train_cnnff.map { f =>
          val nn_e = f._4 - f._1
          nn_e
        }
        val (loss2, counte) = rdd_loss1.treeAggregate((0.0, 0L))(
          seqOp = (c, v) => {
            // c: (e, count), v: (m)
            val e1 = c._1
            val e2 = (v :* v).sum
            val esum = e1 + e2
            (esum, c._2 + 1)
          },
          combOp = (c1, c2) => {
            // c: (e, count)
            val e1 = c1._1
            val e2 = c2._1
            val esum = e1 + e2
            (esum, c1._2 + c2._2)
          })
        val Loss = (loss2 / counte.toDouble) * 0.5
        Loss
      }
    }
    

    1.2 CNNModel代码 

    package CNN
    
    import breeze.linalg.{
      Matrix => BM,
      CSCMatrix => BSM,
      DenseMatrix => BDM,
      Vector => BV,
      DenseVector => BDV,
      SparseVector => BSV
    }
    import org.apache.spark.rdd.RDD
    
    /**
     * label:目标矩阵
     * features:特征矩阵
     * predict_label:预測矩阵
     * error:误差
     */
    case class PredictCNNLabel(label: BDM[Double], features: BDM[Double], predict_label: BDM[Double], error: BDM[Double]) extends Serializable
    
    class CNNModel(
      val cnn_layers: Array[CNNLayers],
      val cnn_ffW: BDM[Double],
      val cnn_ffb: BDM[Double]) extends Serializable {
    
      /**
       * 返回预測结果
       *  返回格式:(label, feature,  predict_label, error)
       */
      def predict(dataMatrix: RDD[(BDM[Double], BDM[Double])]): RDD[PredictCNNLabel] = {
        val sc = dataMatrix.sparkContext
        val bc_cnn_layers = sc.broadcast(cnn_layers)
        val bc_cnn_ffW = sc.broadcast(cnn_ffW)
        val bc_cnn_ffb = sc.broadcast(cnn_ffb)
        // CNNff是进行前向传播
        val train_cnnff = CNN.CNNff(dataMatrix, bc_cnn_layers, bc_cnn_ffb, bc_cnn_ffW)
        val rdd_predict = train_cnnff.map { f =>
          val label = f._1
          val nna1 = f._2(0)(0)
          val nnan = f._4
          val error = f._4 - f._1
          PredictCNNLabel(label, nna1, nnan, error)
        }
        rdd_predict
      }
    
      /**
       * 计算输出误差
       * 平均误差;
       */
      def Loss(predict: RDD[PredictCNNLabel]): Double = {
        val predict1 = predict.map(f => f.error)
        // error and loss
        // 输出误差计算
        val loss1 = predict1
        val (loss2, counte) = loss1.treeAggregate((0.0, 0L))(
          seqOp = (c, v) => {
            // c: (e, count), v: (m)
            val e1 = c._1
            val e2 = (v :* v).sum
            val esum = e1 + e2
            (esum, c._2 + 1)
          },
          combOp = (c1, c2) => {
            // c: (e, count)
            val e1 = c1._1
            val e2 = c2._1
            val esum = e1 + e2
            (esum, c1._2 + c2._2)
          })
        val Loss = (loss2 / counte.toDouble) * 0.5
        Loss
      }
    
    }

    转载请注明出处:

    http://blog.csdn.net/sunbow0

     

  • 相关阅读:
    Kuangbin带你飞 专题二十 斜率DP
    牛客每日一题3月
    2020 SWJTU-ICPC Training Round #2(18年福建省赛)部分题解
    codeforces每日一题31-40
    SWJTU校队训练&Codeforces&Atcoder&&牛客三月补题
    Kuangbin带你飞-专题九连通图
    POJ 3667 Hotel(线段树区间合并)
    AtCoder Beginner Contest 157(题解)
    2.22专项测试复盘
    2.21专项测试复盘
  • 原文地址:https://www.cnblogs.com/mfrbuaa/p/5369849.html
Copyright © 2011-2022 走看看