zoukankan      html  css  js  c++  java
  • python随机数学习笔记

      1 #coding:utf-8
      2 import  random
      3 
      4 # random.randint(1,10)产生1,10的随机整数
      5 for i in range(1,5):
      6     ranint = random.randint(1,10)
      7     print(ranint, end=" ")
      8 print()
      9 
     10 #random.random()产生0,1之间的随机数
     11 for j in range(1,5):
     12     ran_1 = random.random()
     13     print(ran_1,end=" ")
     14 print()
     15 #random.uniform(10,20)产生指定区间的随机符点数
     16 for a in range(1,5):
     17     ran_2 = random.uniform(10,20)
     18     print(ran_2,end=" ")
     19 print()
     20 
     21 #random.randrange(10,20,2)在指定区间上以特定步长产生随机数
     22 for b in range(1,5):
     23     ran_3 = random.randrange(10,20,2)
     24     print(ran_3,end=" ")
     25 print()
     26 for c in range(1,5):
     27     ran_4 = random.choice(range(10,20,2))
     28     print(ran_4,end=" ")
     29 print()
     30 
     31 #random.choice从序列中获取一个随机元素
     32 ran_5 = random.choice(['a','b','c','d'])
     33 print(ran_5)
     34 
     35 #random.shuffle(x[, random]),用于将一个列表中的元素打乱
     36 p = ['I','love','you','and','do','you','hate','me']
     37 ran_6 = random.shuffle(p)
     38 print(p)
     39 
     40 #random.sample(sequence, k),从指定序列中随机获取指定长度的片断。sample函数不会修改原有序列。
     41 
     42 list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
     43 slice = random.sample(list, 5)  #从list中随机获取5个元素,作为一个片断返回
     44 print(slice)
     45 print(list)  #原有序列并没有改变。
     46 
     47 #random.sample(population, k)产生指定序列的指定长度的随机数,可利用此方法产生10位随机密码
     48 #列表转字符串方法:“”.join(list)
     49 #字符串转列表方法:list(str)
     50 ran_7 = random.sample('abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*():"?><',10)
     51 print("".join(ran_7))
     52 
     53 #random.triangular(low, high, mode)
     54 # random.triangular(低,高,模式)
     55 # 返回一个随机浮点数N,以便在这些边界之间使用指定的模式。该低和高界默认的0和1。
     56 # 所述模式参数默认为边界之间的中点,给人一种对称分布。low <= N <= high
     57 ran_8 = random.triangular(10,20)
     58 print(ran_8)
     59 
     60 # random.betavariate(alpha,beta )
     61 # Beta分发。参数的条件是和 。返回值的范围介于0和1之间。alpha > 0beta > 0
     62 ran_9 = random.betavariate(2,9)
     63 print(ran_9)
     64 
     65 # random.expovariate(lambd )
     66 # 指数分布。 lambd是1.0除以所需的平均值。它应该是非零的。
     67 # (该参数将被称为“拉姆达”,但是这是在Python保留字。)
     68 # 返回值的范围从0到正无穷大如果lambd为正,且从负无穷大到0,如果lambd为负。
     69 for i in [0.01,0.2,1,33,-0.02,-0.99,-22,-88]:
     70     ran_10 = random.expovariate(i)
     71     print(ran_10,end=" ")
     72 
     73 # random.gammavariate(alpha,beta )
     74 # Gamma分布。(不是伽玛函数!)参数的条件是和。alpha > 0beta > 0
     75 #
     76 # 概率分布函数是:
     77 #
     78 #           x ** (alpha - 1) * math.exp(-x / beta)
     79 # pdf(x) =  --------------------------------------
     80 #             math.gamma(alpha) * beta ** alpha
     81 # random.gauss(mu,sigma )
     82 # 高斯分布。 mu是平均值,sigma是标准偏差。这比normalvariate()下面定义的函数稍快。
     83 #
     84 # random.lognormvariate(mu,sigma )
     85 # 记录正态分布。如果你采用这个分布的自然对数,你将获得具有平均μ和标准偏差西格玛的正态分布。 mu可以有任何值,sigma必须大于零。
     86 #
     87 # random.normalvariate(mu,sigma )
     88 # 正态分布。 mu是平均值,sigma是标准偏差。
     89 #
     90 # random.vonmisesvariate(mu,kappa )
     91 # mu是平均角度,以弧度表示,介于0和2 * pi之间,kappa 是浓度参数,必须大于或等于零。如果 kappa等于零,则该分布在0到2 * pi的范围内减小到均匀的随机角度。
     92 #
     93 # random.paretovariate(alpha )
     94 # 帕累托分布。 alpha是形状参数。
     95 #
     96 # random.weibullvariate(alpha,beta )
     97 # 威布尔分布。 alpha是scale参数,beta是shape参数。
     98 
     99 # 基本示例:
    100 #
    101 # >>>
    102 # >>> random()                             # Random float:  0.0 <= x < 1.0
    103 # 0.37444887175646646
    104 #
    105 # >>> uniform(2.5, 10.0)                   # Random float:  2.5 <= x < 10.0
    106 # 3.1800146073117523
    107 #
    108 # >>> expovariate(1 / 5)                   # Interval between arrivals averaging 5 seconds
    109 # 5.148957571865031
    110 #
    111 # >>> randrange(10)                        # Integer from 0 to 9 inclusive
    112 # 7
    113 #
    114 # >>> randrange(0, 101, 2)                 # Even integer from 0 to 100 inclusive
    115 # 26
    116 #
    117 # >>> choice(['win', 'lose', 'draw'])      # Single random element from a sequence
    118 # 'draw'
    119 #
    120 # >>> deck = 'ace two three four'.split()
    121 # >>> shuffle(deck)                        # Shuffle a list
    122 # >>> deck
    123 # ['four', 'two', 'ace', 'three']
    124 #
    125 # >>> sample([10, 20, 30, 40, 50], k=4)    # Four samples without replacement
    126 # [40, 10, 50, 30]
    127 # 模拟:
    128 #
    129 # >>>
    130 # >>> # Six roulette wheel spins (weighted sampling with replacement)
    131 # >>> choices(['red', 'black', 'green'], [18, 18, 2], k=6)
    132 # ['red', 'green', 'black', 'black', 'red', 'black']
    133 #
    134 # >>> # Deal 20 cards without replacement from a deck of 52 playing cards
    135 # >>> # and determine the proportion of cards with a ten-value
    136 # >>> # (a ten, jack, queen, or king).
    137 # >>> deck = collections.Counter(tens=16, low_cards=36)
    138 # >>> seen = sample(list(deck.elements()), k=20)
    139 # >>> seen.count('tens') / 20
    140 # 0.15
    141 #
    142 # >>> # Estimate the probability of getting 5 or more heads from 7 spins
    143 # >>> # of a biased coin that settles on heads 60% of the time.
    144 # >>> trial = lambda: choices('HT', cum_weights=(0.60, 1.00), k=7).count('H') >= 5
    145 # >>> sum(trial() for i in range(10000)) / 10000
    146 # 0.4169
    147 #
    148 # >>> # Probability of the median of 5 samples being in middle two quartiles
    149 # >>> trial = lambda : 2500 <= sorted(choices(range(10000), k=5))[2]  < 7500
    150 # >>> sum(trial() for i in range(10000)) / 10000
    151 # 0.7958
    152 # 使用重新取样和替换来估计大小为5的样本的均值的置信区间的统计自举的示例:
    153 #
    154 # # http://statistics.about.com/od/Applications/a/Example-Of-Bootstrapping.htm
    155 # from statistics import mean
    156 # from random import choices
    157 #
    158 # data = 1, 2, 4, 4, 10
    159 # means = sorted(mean(choices(data, k=5)) for i in range(20))
    160 # print(f'The sample mean of {mean(data):.1f} has a 90% confidence '
    161 #       f'interval from {means[1]:.1f} to {means[-2]:.1f}')
    162 # 重新采样置换测试的示例, 以确定药物与安慰剂的效果之间观察到的差异的统计显着性或p值:
    163 #
    164 # # Example from "Statistics is Easy" by Dennis Shasha and Manda Wilson
    165 # from statistics import mean
    166 # from random import shuffle
    167 #
    168 # drug = [54, 73, 53, 70, 73, 68, 52, 65, 65]
    169 # placebo = [54, 51, 58, 44, 55, 52, 42, 47, 58, 46]
    170 # observed_diff = mean(drug) - mean(placebo)
    171 #
    172 # n = 10000
    173 # count = 0
    174 # combined = drug + placebo
    175 # for i in range(n):
    176 #     shuffle(combined)
    177 #     new_diff = mean(combined[:len(drug)]) - mean(combined[len(drug):])
    178 #     count += (new_diff >= observed_diff)
    179 #
    180 # print(f'{n} label reshufflings produced only {count} instances with a difference')
    181 # print(f'at least as extreme as the observed difference of {observed_diff:.1f}.')
    182 # print(f'The one-sided p-value of {count / n:.4f} leads us to reject the null')
    183 # print(f'hypothesis that there is no difference between the drug and the placebo.')
    184 # 模拟单个服务器队列中的到达时间和服务交付:
    185 #
    186 # from random import expovariate, gauss
    187 # from statistics import mean, median, stdev
    188 #
    189 # average_arrival_interval = 5.6
    190 # average_service_time = 5.0
    191 # stdev_service_time = 0.5
    192 #
    193 # num_waiting = 0
    194 # arrivals = []
    195 # starts = []
    196 # arrival = service_end = 0.0
    197 # for i in range(20000):
    198 #     if arrival <= service_end:
    199 #         num_waiting += 1
    200 #         arrival += expovariate(1.0 / average_arrival_interval)
    201 #         arrivals.append(arrival)
    202 #     else:
    203 #         num_waiting -= 1
    204 #         service_start = service_end if num_waiting else arrival
    205 #         service_time = gauss(average_service_time, stdev_service_time)
    206 #         service_end = service_start + service_time
    207 #         starts.append(service_start)
    208 #
    209 # waits = [start - arrival for arrival, start in zip(arrivals, starts)]
    210 # print(f'Mean wait: {mean(waits):.1f}.  Stdev wait: {stdev(waits):.1f}.')
    211 # print(f'Median wait: {median(waits):.1f}.  Max wait: {max(waits):.1f}.')
    212 # 也可以看看 “黑客统计” 是Jake Vanderplas 关于统计分析的视频教程, 仅使用了一些基本概念,包括模拟,抽样,改组和交叉验证。
    213 # 经济模拟Peter Norvig对 市场的模拟 ,显示了该模块提供的许多工具和分布的有效使用(高斯,均匀,样本,beta变量,选择,三角和randrange)。
    214 #
    215 # 具体的概率介绍(使用Python)Peter Norvig 的教程,涵盖了概率论的基础知识,如何编写模拟,以及如何使用Python进行数据分析。
    216 
    217 
    218 

  • 相关阅读:
    适配器
    策略
    oom的各种情况
    sql 优化//TODO
    聚簇索引和非聚簇索引
    Shard内部原理
    es集群健康状态
    转载 R语言颜色基础设置
    三维数据的展示
    python 文件保存 出错
  • 原文地址:https://www.cnblogs.com/mfyang/p/9410393.html
Copyright © 2011-2022 走看看