zoukankan      html  css  js  c++  java
  • hdu5967数学找规律+逆元

    Detachment

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 1686    Accepted Submission(s): 467


    Problem Description
    In a highly developed alien society, the habitats are almost infinite dimensional space.
    In the history of this planet,there is an old puzzle.
    You have a line segment with x units’ length representing one dimension.The line segment can be split into a number of small line segments: a1,a2 , … (x= a1+a2 +…) assigned to different dimensions. And then, the multidimensional space has been established. Now there are two requirements for this space:
    1.Two different small line segments cannot be equal ( aiaj when i≠j).
    2.Make this multidimensional space size s as large as possible (s= a1a2 *...).Note that it allows to keep one dimension.That's to say, the number of ai can be only one.
    Now can you solve this question and find the maximum size of the space?(For the final number is too large,your answer will be modulo 10^9+7)
     

     

    Input
    The first line is an integer T,meaning the number of test cases.
    Then T lines follow. Each line contains one integer x.
    1≤T≤10^6, 1≤x≤10^9
     

     

    Output
    Maximum s you can get modulo 10^9+7. Note that we wants to be greatest product before modulo 10^9+7.
     

     

    Sample Input
    1
    4
     

     

    Sample Output
    4
     
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    const int N=1e5+88;
    const int mod=1e9+7;
    long long add[N],mul[N];
    void init(){
       add[0]=add[1]=0;
       mul[1]=mul[0]=1;
       for(int i=2;i<N;++i) {
        add[i]=i+add[i-1];
        mul[i]=(mul[i-1]*i)%mod;
       }
    }
    long long kuai(long long base,long long k){
       long long ans=1;
       while(k){
        if(k&1) ans=(ans*base)%mod;
        k>>=1;
        base=(base*base)%mod;
       }
       return ans;
    }
    int main(){
       init();
       int T;
       for(scanf("%d",&T);T--;){
        int x;
        scanf("%d",&x);
        if(x<=4) {printf("%d
    ",x);continue;}
        int l=2,r=N-1,ans;
        while(l<=r){
            int mid=(l+r)>>1;
            if(add[mid]<=x) {ans=mid,l=mid+1;}
            else r=mid-1;
        }
        int temp=x-add[ans];
        if(temp==0) printf("%I64d
    ",mul[ans]);
        else if(temp == ans) printf("%I64d
    ", mul[ans]*kuai(2, mod-2)%mod*(ans+2)%mod);
        else printf("%I64d
    ",((mul[ans+1]*mul[ans-temp])%mod*kuai(mul[ans-temp+1],mod-2))%mod);
       }
    }

    http://blog.csdn.net/chen_ze_hua/article/details/53081001  逆元模板

     
  • 相关阅读:
    where和having的区别
    lnmp环境安装
    Elasticsearch 日常维护命令
    Haproxy基础知识
    LVM常规操作记录梳理(扩容/缩容/快照等)
    Centos7下ELK+Redis日志分析平台的集群环境部署记录
    CentOS7.2下安装php加速软件Xcache
    ELK实时日志分析平台环境部署
    Docker容器时间跟主机时间保持同步的操作记录
    ELK基础架构解析
  • 原文地址:https://www.cnblogs.com/mfys/p/7544767.html
Copyright © 2011-2022 走看看