zoukankan      html  css  js  c++  java
  • 2017ccpc全国邀请赛(湖南湘潭) E. Partial Sum

    E. Partial Sum
    Bobo has a integer sequence a 1 ,a 2 ,...,a n of length n. Each time, he selects two ends 0 ≤ l < r ≤ n and
    add |
    ∑ r
    j=l+1 a j | − C into a counter which is zero initially. He repeats the selection for at most m times.
    If each end can be selected at most once (either as left or right), find out the maximum sum Bobo may have.
    Input
    The input contains zero or more test cases and is terminated by end-of-file. For each test case:
    The first line contains three integers n, m, C. The second line contains n integers a 1 ,a 2 ,...,a n .
    • 2 ≤ n ≤ 10 5
    • 1 ≤ 2m ≤ n + 1
    • |a i |,C ≤ 10 4
    • The sum of n does not exceed 10 6 .
    Output
    For each test cases, output an integer which denotes the maximum.
    Sample Input
    4 1 1
    -1 2 2 -1
    4 2 1
    -1 2 2 -1
    4 2 2
    -1 2 2 -1
    4 2 10
    -1 2 2 -1
    Sample Output
    3
    4
    2
    0

    官方题解:

    前缀和排下序,最大前缀和-最小前缀和就是最大区间和,一直枚举就行了

    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    #include<string>
    #include<algorithm>
    #include<iostream>
    #include<queue>
    #include<map>
    #include<cmath>
    #include<set>
    #include<stack>
    #define ll long long
    #define max(x,y) (x)>(y)?(x):(y)
    #define min(x,y) (x)>(y)?(y):(x)
    #define cls(name,x) memset(name,x,sizeof(name))
    using namespace std;
    const int inf=1<<28;
    const int maxn=100010;
    const int maxm=110;
    const int mod=1e9+7;
    const double pi=acos(-1.0);
    int n,m,c;
    int num[maxn],sum[maxn];
    int main()
    {
        //freopen("in.txt","r",stdin);
        while(~scanf("%d%d%d",&n,&m,&c))
        {
            sum[0]=0;
            for(int i=1;i<=n;i++)
            {
                scanf("%d",&num[i]);
                sum[i]=sum[i-1]+num[i];
            }
            sort(sum,sum+n+1);
            ll ans=0;
            int l=0,r=n;
            for(int i=0;i<m&&l<r;i++)
            {
                if(sum[r]-sum[l]-c>=0)
                {
                    ans+=sum[r]-sum[l]-c;
                    r--,l++;
                }
            }
            printf("%I64d
    ",ans);
        }
        return 0;
    }
  • 相关阅读:
    poj 3252 Round Numbers 数位DP
    HDU5840 Problem This world need more Zhu 分块 树剖
    有向图强连通分量
    CodeForces
    Gym-100814K 数位DP 模拟除法
    洛谷P3455 [POI2007]ZAP-Queries
    洛谷P2257 YY的GCD
    洛谷P3327 [SDOI2015]约数个数和(莫比乌斯反演)
    莫比乌斯反演
    小知识点
  • 原文地址:https://www.cnblogs.com/mgz-/p/6857933.html
Copyright © 2011-2022 走看看