zoukankan      html  css  js  c++  java
  • AtCoder Regular Contest 075 E

    E - Meaningful Mean


    Time limit : 2sec / Memory limit : 256MB

    Score : 600 points

    Problem Statement

    You are given an integer sequence of length Na= {a1,a2,…,aN}, and an integer K.

    a has N(N+1)⁄2 non-empty contiguous subsequences, {al,al+1,…,ar(1≤lrN). Among them, how many have an arithmetic mean that is greater than or equal to K?

    Constraints

    • All input values are integers.
    • 1≤N≤2×105
    • 1≤K≤109
    • 1≤ai≤109

    Input

    Input is given from Standard Input in the following format:

    N K
    a1
    a2
    :
    aN
    

    Output

    Print the number of the non-empty contiguous subsequences with an arithmetic mean that is greater than or equal to K.


    Sample Input 1

    Copy
    3 6
    7
    5
    7
    

    Sample Output 1

    Copy
    5
    

    All the non-empty contiguous subsequences of a are listed below:

    • {a1} = {7}
    • {a1,a2} = {7,5}
    • {a1,a2,a3} = {7,5,7}
    • {a2} = {5}
    • {a2,a3} = {5,7}
    • {a3} = {7}

    Their means are 7619⁄356 and 7, respectively, and five among them are 6 or greater. Note that {a1} and {a3} are indistinguishable by the values of their elements, but we count them individually.


    Sample Input 2

    Copy
    1 2
    1
    

    Sample Output 2

    Copy
    0
    

    Sample Input 3

    Copy
    7 26
    10
    20
    30
    40
    30
    20
    10
    

    Sample Output 3

    Copy
    13

    官方题解:

    题解前半段很好懂,最后一段说可以使用树状数组,一开始不是很懂,看了别人的题解发现原来可以用求逆序对数的做法。

    我一开始想到的是求[i+1,n]区间大于等于f[i]的个数,于是就用归并树做了。

    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    #include<string>
    #include<algorithm>
    #include<iostream>
    #include<queue>
    #include<map>
    #include<cmath>
    #include<set>
    #include<stack>
    #define ll long long
    #define pb push_back
    #define max(x,y) ((x)>(y)?(x):(y))
    #define min(x,y) ((x)>(y)?(y):(x))
    #define cls(name,x) memset(name,x,sizeof(name))
    using namespace std;
    const int inf=1e9+10;
    const ll llinf=1e16+10;
    const int maxn=1e6+10;
    const int maxm=2e5+10;
    const int mod=1e9+7;
    const double pi=acos(-1.0);
    int n;
    ll sum,k;
    ll f[maxn];
    struct node
    {
        ll *num;
        int len;
    }tree[maxn*4];
    void build(int l,int r,int rt)
    {
        tree[rt].len=r-l+1;
        tree[rt].num=new ll[tree[rt].len];
        if(l==r)
        {
            tree[rt].num[0]=f[l];
            return ;
        }
        int mid=(l+r)/2;
        build(l,mid,rt*2);
        build(mid+1,r,rt*2+1);
        int i=0,j=0,k=0;
        while(i<tree[rt*2].len&&j<tree[rt*2+1].len)
        {
            if(tree[rt*2].num[i]<tree[rt*2+1].num[j])
                tree[rt].num[k++]=tree[rt*2].num[i++];
            else
                tree[rt].num[k++]=tree[rt*2+1].num[j++];
        }
        while(i<tree[rt*2].len)
            tree[rt].num[k++]=tree[rt*2].num[i++];
        while(j<tree[rt*2+1].len)
            tree[rt].num[k++]=tree[rt*2+1].num[j++];
    }
    int querry(int ql,int qr,ll key,int l,int r,int rt)
    {
        if(ql==l&&qr==r)
        {
            int c=lower_bound(tree[rt].num,tree[rt].num+tree[rt].len,key)-tree[rt].num;
            return tree[rt].len-c;
        }
        int mid=(l+r)/2;
        if(qr<=mid)
            return querry(ql,qr,key,l,mid,rt*2);
        else if(ql>=mid+1)
            return querry(ql,qr,key,mid+1,r,rt*2+1);
        else
            return querry(ql,mid,key,l,mid,rt*2)+querry(mid+1,qr,key,mid+1,r,rt*2+1);
    }
    int main()
    {
        //freopen("in.txt","r",stdin);
        while(~scanf("%d %lld",&n,&k))
        {
            sum=0;
            f[0]=sum-k*(0+1);
            for(int i=1;i<=n;i++)
            {
                int t;
                scanf("%d",&t);
                sum=sum+t;
                f[i]=sum-k*(i+1);
            }
            build(1,n,1);
            ll ans=0;
            for(int i=0;i<=n-1;i++)
            {
                ans+=querry(i+1,n,f[i],1,n,1);
            }
            printf("%lld
    ",ans);
        }
        return 0;
    }
    
    
  • 相关阅读:
    《ASP.NET MVC 5 破境之道》:第一境 ASP.Net MVC5项目初探 — 第三节:View层简单改造
    《ASP.NET MVC 5 破境之道》:第一境 ASP.Net MVC5项目初探 — 第二节:MVC5项目结构
    量化投资学习笔记27——《Python机器学习应用》课程笔记01
    量化投资学习笔记26——机器学习算法概览
    量化投资学习笔记25——朴素贝叶斯:实操,泰坦尼克号乘客生还机会预测
    量化投资学习笔记24——贝叶斯方法
    量化投资学习笔记23——支持向量机:实操,泰坦尼克号乘客生还机会预测
    量化投资学习笔记22——回归分析:支持向量机
    量化投资学习笔记21——回归分析:逻辑回归
    量化投资学习笔记20——回归分析:实操,泰坦尼克号乘客生还机会预测,逻辑回归方法。
  • 原文地址:https://www.cnblogs.com/mgz-/p/7128531.html
Copyright © 2011-2022 走看看