转自 https://www.kubernetes.org.cn/3814.html
本篇延续过往手动安装方式来部署 Kubernetes v1.10.x 版本的 High Availability 集群,主要目的是学习 Kubernetes 安装的一些元件关析与流程。若不想这么累的话,可以参考 Picking the Right Solution 来选择自己最喜欢的方式。
本次安装的软件版本:
- Kubernetes v1.10.0
- CNI v0.6.0
- Etcd v3.1.13
- Calico v3.0.4
- Docker CE latest version
节点信息
本教学将以下列节点数与规格来进行部署 Kubernetes 集群,操作系统可采用Ubuntu 16.x与CentOS 7.x:
IP Address | Hostname | CPU | Memory |
---|---|---|---|
192.16.35.11 | k8s-m1 | 1 | 4G |
192.16.35.12 | k8s-m2 | 1 | 4G |
192.16.35.13 | k8s-m3 | 1 | 4G |
192.16.35.14 | k8s-n1 | 1 | 4G |
192.16.35.15 | k8s-n2 | 1 | 4G |
192.16.35.16 | k8s-n2 | 1 | 4G |
另外由所有 master 节点提供一组 VIP 192.16.35.10。
- 这边m为主要控制节点,n为应用程序工作节点。
- 所有操作全部用root使用者进行(方便用),以 SRE 来说不推荐。
- 可以下载Vagrantfile 来建立 Virtualbox 虚拟机集群。不过需要注意机器资源是否足够。
事前准备
开始安装前需要确保以下条件已达成:
- 所有节点彼此网络互通,并且k8s-m1SSH 登入其他节点为 passwdless。
- 所有防火墙与 SELinux 已关闭。如 CentOS:
$ systemctl stop firewalld && systemctl disable firewalld
$ setenforce 0
$ vim /etc/selinux/config
SELINUX=disabled
- 所有节点需要设定/etc/hosts解析到所有集群主机。
...
192.16.35.11 k8s-m1
192.16.35.12 k8s-m2
192.16.35.13 k8s-m3
192.16.35.14 k8s-n1
192.16.35.15 k8s-n2
192.16.35.16 k8s-n3
- 所有节点需要安装 Docker CE 版本的容器引擎:
$ curl -fsSL "https://get.docker.com/" | sh
不管是在 Ubuntu 或 CentOS 都只需要执行该指令就会自动安装最新版 Docker。
CentOS 安装完成后,需要再执行以下指令:
$ systemctl enable docker && systemctl start docker
所有节点需要设定/etc/sysctl.d/k8s.conf的系统参数。
$ cat <<EOF > /etc/sysctl.d/k8s.conf
net.ipv4.ip_forward = 1
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
EOF
$ sysctl -p /etc/sysctl.d/k8s.conf
- Kubernetes v1.8+ 要求关闭系统 Swap,若不关闭则需要修改 kubelet 设定参数,在所有节点利用以下指令关闭:
$ swapoff -a && sysctl -w vm.swappiness=0
记得/etc/fstab也要注解掉SWAP挂载。
- 在所有节点下载 Kubernetes 二进制执行档:
$ export KUBE_URL="https://storage.googleapis.com/kubernetes-release/release/v1.10.0/bin/linux/amd64"
$ wget "${KUBE_URL}/kubelet" -O /usr/local/bin/kubelet
$ chmod +x /usr/local/bin/kubelet
# node 请忽略下载 kubectl
$ wget "${KUBE_URL}/kubectl" -O /usr/local/bin/kubectl
$ chmod +x /usr/local/bin/kubectl
- 在所有节点下载 Kubernetes CNI 二进制文件:
$ mkdir -p /opt/cni/bin && cd /opt/cni/bin
$ export CNI_URL="https://github.com/containernetworking/plugins/releases/download"
$ wget -qO- --show-progress "${CNI_URL}/v0.6.0/cni-plugins-amd64-v0.6.0.tgz" | tar -zx
- 在k8s-m1需要安装CFSSL工具,这将会用来建立 TLS Certificates。
$ export CFSSL_URL="https://pkg.cfssl.org/R1.2"
$ wget "${CFSSL_URL}/cfssl_linux-amd64" -O /usr/local/bin/cfssl
$ wget "${CFSSL_URL}/cfssljson_linux-amd64" -O /usr/local/bin/cfssljson
$ chmod +x /usr/local/bin/cfssl /usr/local/bin/cfssljson
建立集群 CA keys 与 Certificates
在这个部分,将需要产生多个元件的 Certificates,这包含 Etcd、Kubernetes 元件等,并且每个集群都会有一个根数位凭证认证机构(Root Certificate Authority)被用在认证 API Server 与 Kubelet 端的凭证。
P.S. 这边要注意 CA JSON 档的CN(Common Name)与O(Organization)等内容是会影响 Kubernetes 元件认证的。
Etcd
首先在k8s-m1建立/etc/etcd/ssl资料夹,然后进入目录完成以下操作。
$ mkdir -p /etc/etcd/ssl && cd /etc/etcd/ssl
$ export PKI_URL="https://kairen.github.io/files/manual-v1.10/pki"
下载ca-config.json与etcd-ca-csr.json文件,并从 CSR json 产生 CA keys 与 Certificate:
$ wget "${PKI_URL}/ca-config.json" "${PKI_URL}/etcd-ca-csr.json"
$ cfssl gencert -initca etcd-ca-csr.json | cfssljson -bare etcd-ca
下载etcd-csr.json文件,并产生 Etcd 证书:
$ wget "${PKI_URL}/etcd-csr.json"
$ cfssl gencert
-ca=etcd-ca.pem
-ca-key=etcd-ca-key.pem
-config=ca-config.json
-hostname=127.0.0.1,192.16.35.11,192.16.35.12,192.16.35.13
-profile=kubernetes
etcd-csr.json | cfssljson -bare etcd
-hostname需修改成所有 masters 节点。
完成后删除不必要文件:
$ rm -rf *.json *.csr
确认/etc/etcd/ssl有以下文件:
$ ls /etc/etcd/ssl
etcd-ca-key.pem etcd-ca.pem etcd-key.pem etcd.pem
复制相关文件至其他 Etcd 节点,这边为所有master节点:
$ for NODE in k8s-m2 k8s-m3; do
echo "--- $NODE ---"
ssh ${NODE} "mkdir -p /etc/etcd/ssl"
for FILE in etcd-ca-key.pem etcd-ca.pem etcd-key.pem etcd.pem; do
scp /etc/etcd/ssl/${FILE} ${NODE}:/etc/etcd/ssl/${FILE}
done
done
Kubernetes
在k8s-m1建立pki资料夹,然后进入目录完成以下章节操作。
$ mkdir -p /etc/kubernetes/pki && cd /etc/kubernetes/pki
$ export PKI_URL="https://kairen.github.io/files/manual-v1.10/pki"
$ export KUBE_APISERVER="https://192.16.35.10:6443"
下载ca-config.json与ca-csr.json文件,并产生 CA 金钥:
$ wget "${PKI_URL}/ca-config.json" "${PKI_URL}/ca-csr.json"
$ cfssl gencert -initca ca-csr.json | cfssljson -bare ca
$ ls ca*.pem
ca-key.pem ca.pem
API Server Certificate
下载apiserver-csr.json文件,并产生 kube-apiserver 凭证:
$ wget "${PKI_URL}/apiserver-csr.json"
$ cfssl gencert
-ca=ca.pem
-ca-key=ca-key.pem
-config=ca-config.json
-hostname=10.96.0.1,192.16.35.10,127.0.0.1,kubernetes.default
-profile=kubernetes
apiserver-csr.json | cfssljson -bare apiserver
$ ls apiserver*.pem
apiserver-key.pem apiserver.pem
- 这边-hostname的96.0.1是 Cluster IP 的 Kubernetes 端点;
- 16.35.10为虚拟 IP 位址(VIP);
- default为 Kubernetes DN。
Front Proxy Certificate
下载front-proxy-ca-csr.json文件,并产生 Front Proxy CA 金钥,Front Proxy 主要是用在 API aggregator 上:
$ wget "${PKI_URL}/front-proxy-ca-csr.json"
$ cfssl gencert
-initca front-proxy-ca-csr.json | cfssljson -bare front-proxy-ca
$ ls front-proxy-ca*.pem
front-proxy-ca-key.pem front-proxy-ca.pem
下载front-proxy-client-csr.json文件,并产生 front-proxy-client 证书:
$ wget "${PKI_URL}/front-proxy-client-csr.json"
$ cfssl gencert
-ca=front-proxy-ca.pem
-ca-key=front-proxy-ca-key.pem
-config=ca-config.json
-profile=kubernetes
front-proxy-client-csr.json | cfssljson -bare front-proxy-client
$ ls front-proxy-client*.pem
front-proxy-client-key.pem front-proxy-client.pem
Admin Certificate
下载admin-csr.json文件,并产生 admin certificate 凭证:
$ wget "${PKI_URL}/admin-csr.json"
$ cfssl gencert
-ca=ca.pem
-ca-key=ca-key.pem
-config=ca-config.json
-profile=kubernetes
admin-csr.json | cfssljson -bare admin
$ ls admin*.pem
admin-key.pem admin.pem
接着通过以下指令产生名称为 admin.conf 的 kubeconfig 档:
# admin set cluster
$ kubectl config set-cluster kubernetes
--certificate-authority=ca.pem
--embed-certs=true
--server=${KUBE_APISERVER}
--kubeconfig=../admin.conf
# admin set credentials
$ kubectl config set-credentials kubernetes-admin
--client-certificate=admin.pem
--client-key=admin-key.pem
--embed-certs=true
--kubeconfig=../admin.conf
# admin set context
$ kubectl config set-context kubernetes-admin@kubernetes
--cluster=kubernetes
--user=kubernetes-admin
--kubeconfig=../admin.conf
# admin set default context
$ kubectl config use-context kubernetes-admin@kubernetes
--kubeconfig=../admin.conf
Controller Manager Certificate
下载manager-csr.json文件,并产生 kube-controller-manager certificate 凭证:
$ wget "${PKI_URL}/manager-csr.json"
$ cfssl gencert
-ca=ca.pem
-ca-key=ca-key.pem
-config=ca-config.json
-profile=kubernetes
manager-csr.json | cfssljson -bare controller-manager
$ ls controller-manager*.pem
controller-manager-key.pem controller-manager.pem
若节点 IP 不同,需要修改manager-csr.json的hosts。
接着通过以下指令产生名称为controller-manager.conf的 kubeconfig 档:
# controller-manager set cluster
$ kubectl config set-cluster kubernetes
--certificate-authority=ca.pem
--embed-certs=true
--server=${KUBE_APISERVER}
--kubeconfig=../controller-manager.conf
# controller-manager set credentials
$ kubectl config set-credentials system:kube-controller-manager
--client-certificate=controller-manager.pem
--client-key=controller-manager-key.pem
--embed-certs=true
--kubeconfig=../controller-manager.conf
# controller-manager set context
$ kubectl config set-context system:kube-controller-manager@kubernetes
--cluster=kubernetes
--user=system:kube-controller-manager
--kubeconfig=../controller-manager.conf
# controller-manager set default context
$ kubectl config use-context system:kube-controller-manager@kubernetes
--kubeconfig=../controller-manager.conf
Scheduler Certificate
下载scheduler-csr.json文件,并产生 kube-scheduler certificate 凭证:
$ wget "${PKI_URL}/scheduler-csr.json"
$ cfssl gencert
-ca=ca.pem
-ca-key=ca-key.pem
-config=ca-config.json
-profile=kubernetes
scheduler-csr.json | cfssljson -bare scheduler
$ ls scheduler*.pem
scheduler-key.pem scheduler.pem
若节点 IP 不同,需要修改scheduler-csr.json的hosts。
接着通过以下指令产生名称为 scheduler.conf 的 kubeconfig 档:
# scheduler set cluster
$ kubectl config set-cluster kubernetes
--certificate-authority=ca.pem
--embed-certs=true
--server=${KUBE_APISERVER}
--kubeconfig=../scheduler.conf
# scheduler set credentials
$ kubectl config set-credentials system:kube-scheduler
--client-certificate=scheduler.pem
--client-key=scheduler-key.pem
--embed-certs=true
--kubeconfig=../scheduler.conf
# scheduler set context
$ kubectl config set-context system:kube-scheduler@kubernetes
--cluster=kubernetes
--user=system:kube-scheduler
--kubeconfig=../scheduler.conf
# scheduler use default context
$ kubectl config use-context system:kube-scheduler@kubernetes
--kubeconfig=../scheduler.conf
Master Kubelet Certificate
接着在所有k8s-m1节点下载kubelet-csr.json文件,并产生凭证:
$ wget "${PKI_URL}/kubelet-csr.json"
$ for NODE in k8s-m1 k8s-m2 k8s-m3; do
echo "--- $NODE ---"
cp kubelet-csr.json kubelet-$NODE-csr.json;
sed -i "s/$NODE/$NODE/g" kubelet-$NODE-csr.json;
cfssl gencert
-ca=ca.pem
-ca-key=ca-key.pem
-config=ca-config.json
-hostname=$NODE
-profile=kubernetes
kubelet-$NODE-csr.json | cfssljson -bare kubelet-$NODE
done
$ ls kubelet*.pem
kubelet-k8s-m1-key.pem kubelet-k8s-m1.pem kubelet-k8s-m2-key.pem kubelet-k8s-m2.pem kubelet-k8s-m3-key.pem kubelet-k8s-m3.pem
这边需要依据节点修改-hostname与$NODE。
完成后复制 kubelet 凭证至其他master节点:
$ for NODE in k8s-m2 k8s-m3; do
echo "--- $NODE ---"
ssh ${NODE} "mkdir -p /etc/kubernetes/pki"
for FILE in kubelet-$NODE-key.pem kubelet-$NODE.pem ca.pem; do
scp /etc/kubernetes/pki/${FILE} ${NODE}:/etc/kubernetes/pki/${FILE}
done
done
接着执行以下指令产生名称为kubelet.conf的 kubeconfig 档:
$ for NODE in k8s-m1 k8s-m2 k8s-m3; do
echo "--- $NODE ---"
ssh ${NODE} "cd /etc/kubernetes/pki &&
kubectl config set-cluster kubernetes
--certificate-authority=ca.pem
--embed-certs=true
--server=${KUBE_APISERVER}
--kubeconfig=../kubelet.conf &&
kubectl config set-cluster kubernetes
--certificate-authority=ca.pem
--embed-certs=true
--server=${KUBE_APISERVER}
--kubeconfig=../kubelet.conf &&
kubectl config set-credentials system:node:${NODE}
--client-certificate=kubelet-${NODE}.pem
--client-key=kubelet-${NODE}-key.pem
--embed-certs=true
--kubeconfig=../kubelet.conf &&
kubectl config set-context system:node:${NODE}@kubernetes
--cluster=kubernetes
--user=system:node:${NODE}
--kubeconfig=../kubelet.conf &&
kubectl config use-context system:node:${NODE}@kubernetes
--kubeconfig=../kubelet.conf &&
rm kubelet-${NODE}.pem kubelet-${NODE}-key.pem"
done
Service Account Key
Service account 不是通过 CA 进行认证,因此不要通过 CA 来做 Service account key 的检查,这边建立一组 Private 与 Public 金钥提供给 Service account key 使用:
$ openssl genrsa -out sa.key 2048
$ openssl rsa -in sa.key -pubout -out sa.pub
$ ls sa.*
sa.key sa.pub
删除不必要文件
所有信息准备完成后,就可以将一些不必要文件删除:
$ rm -rf *.json *.csr scheduler*.pem controller-manager*.pem admin*.pem kubelet*.pem
复制文件至其他节点
复制凭证文件至其他master节点:
$ for NODE in k8s-m2 k8s-m3; do
echo "--- $NODE ---"
for FILE in $(ls /etc/kubernetes/pki/); do
scp /etc/kubernetes/pki/${FILE} ${NODE}:/etc/kubernetes/pki/${FILE}
done
done
复制 Kubernetes config 文件至其他master节点:
$ for NODE in k8s-m2 k8s-m3; do
echo "--- $NODE ---"
for FILE in admin.conf controller-manager.conf scheduler.conf; do
scp /etc/kubernetes/${FILE} ${NODE}:/etc/kubernetes/${FILE}
done
done
Kubernetes Masters
本部分将说明如何建立与设定 Kubernetes Master 角色,过程中会部署以下元件:
- kube-apiserver:提供 REST APIs,包含授权、认证与状态储存等。
- kube-controller-manager:负责维护集群的状态,如自动扩展,滚动更新等。
- kube-scheduler:负责资源排程,依据预定的排程策略将 Pod 分配到对应节点上。
- Etcd:储存集群所有状态的 Key/Value 储存系统。
- HAProxy:提供负载平衡器。
- Keepalived:提供虚拟网络位址(VIP)。
部署与设定
首先在所有 master 节点下载部署元件的 YAML 文件,这边不采用二进制执行档与 Systemd 来管理这些元件,全部采用 Static Pod 来达成。这边将文件下载至/etc/kubernetes/manifests目录:
$ export CORE_URL="https://kairen.github.io/files/manual-v1.10/master"
$ mkdir -p /etc/kubernetes/manifests && cd /etc/kubernetes/manifests
$ for FILE in kube-apiserver kube-controller-manager kube-scheduler haproxy keepalived etcd etcd.config; do
wget "${CORE_URL}/${FILE}.yml.conf" -O ${FILE}.yml
if [ ${FILE} == "etcd.config" ]; then
mv etcd.config.yml /etc/etcd/etcd.config.yml
sed -i "s/${HOSTNAME}/${HOSTNAME}/g" /etc/etcd/etcd.config.yml
sed -i "s/${PUBLIC_IP}/$(hostname -i)/g" /etc/etcd/etcd.config.yml
fi
done
$ ls /etc/kubernetes/manifests
etcd.yml haproxy.yml keepalived.yml kube-apiserver.yml kube-controller-manager.yml kube-scheduler.yml
- 若IP与教学设定不同的话,请记得修改 YAML 文件。
- kube-apiserver 中的NodeRestriction 请参考 Using Node Authorization。
产生一个用来加密 Etcd 的 Key:
$ head -c 32 /dev/urandom | base64SUpbL4juUYyvxj3/gonV5xVEx8j769/99TSAf8YT/sQ=
注意每台master节点需要用一样的 Key。
在/etc/kubernetes/目录下,建立encryption.yml的加密 YAML 文件:
$ cat <<EOF > /etc/kubernetes/encryption.yml
kind: EncryptionConfig
apiVersion: v1
resources:
- resources:
- secrets
providers:
- aescbc:
keys:
- name: key1
secret: SUpbL4juUYyvxj3/gonV5xVEx8j769/99TSAf8YT/sQ=
- identity: {}
EOF
Etcd 资料加密可参考这篇 Encrypting data at rest。
在/etc/kubernetes/目录下,建立audit-policy.yml的进阶稽核策略 YAML 档:
$ cat <<EOF > /etc/kubernetes/audit-policy.yml
apiVersion: audit.k8s.io/v1beta1
kind: Policy
rules:- level: Metadata
EOF
Audit Policy 请参考这篇 Auditing。
下载haproxy.cfg文件来提供给 HAProxy 容器使用:
$ mkdir -p /etc/haproxy/
$ wget "${CORE_URL}/haproxy.cfg" -O /etc/haproxy/haproxy.cfg
若与本教学 IP 不同的话,请记得修改设定档。
下载kubelet.service相关文件来管理 kubelet:
$ mkdir -p /etc/systemd/system/kubelet.service.d
$ wget "${CORE_URL}/kubelet.service" -O /lib/systemd/system/kubelet.service
$ wget "${CORE_URL}/10-kubelet.conf" -O /etc/systemd/system/kubelet.service.d/10-kubelet.conf
若 cluster dns或domain有改变的话,需要修改10-kubelet.conf。
最后建立 var 存放信息,然后启动 kubelet 服务:
$ mkdir -p /var/lib/kubelet /var/log/kubernetes /var/lib/etcd
$ systemctl enable kubelet.service && systemctl start kubelet.service
完成后会需要一段时间来下载镜像档与启动元件,可以利用该指令来监看:
$ watch netstat -ntlpActive Internet connections (only servers)Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 127.0.0.1:10248 0.0.0.0:* LISTEN 10344/kubelet
tcp 0 0 127.0.0.1:10251 0.0.0.0:* LISTEN 11324/kube-schedule
tcp 0 0 0.0.0.0:6443 0.0.0.0:* LISTEN 11416/haproxy
tcp 0 0 127.0.0.1:10252 0.0.0.0:* LISTEN 11235/kube-controll
tcp 0 0 0.0.0.0:9090 0.0.0.0:* LISTEN 11416/haproxy
tcp6 0 0 :::2379 :::* LISTEN 10479/etcd
tcp6 0 0 :::2380 :::* LISTEN 10479/etcd
tcp6 0 0 :::10255 :::* LISTEN 10344/kubelet
tcp6 0 0 :::5443 :::* LISTEN 11295/kube-apiserve
若看到以上信息表示服务正常启动,若发生问题可以用docker指令来查看。
验证集群
完成后,在任意一台master节点复制 admin kubeconfig 文件,并通过简单指令验证:
$ cp /etc/kubernetes/admin.conf ~/.kube/config
$ kubectl get cs
NAME STATUS MESSAGE ERROR
controller-manager Healthy ok
scheduler Healthy ok
etcd-2 Healthy {"health": "true"}
etcd-1 Healthy {"health": "true"}
etcd-0 Healthy {"health": "true"}
$ kubectl get node
NAME STATUS ROLES AGE VERSION
k8s-m1 NotReady master 52s v1.10.0
k8s-m2 NotReady master 51s v1.10.0
k8s-m3 NotReady master 50s v1.10.0
$ kubectl -n kube-system get po
NAME READY STATUS RESTARTS AGE
etcd-k8s-m1 1/1 Running 0 7s
etcd-k8s-m2 1/1 Running 0 57s
haproxy-k8s-m3 1/1 Running 0 1m...
接着确认服务能够执行 logs 等指令:
$ kubectl -n kube-system logs -f kube-scheduler-k8s-m2Error from server (Forbidden): Forbidden (user=kube-apiserver, verb=get, resource=nodes, subresource=proxy) ( pods/log kube-scheduler-k8s-m2)
这边会发现出现 403 Forbidden 问题,这是因为 kube-apiserver user 并没有 nodes 的资源存取权限,属于正常。
由于上述权限问题,必需建立一个apiserver-to-kubelet-rbac.yml来定义权限,以供对 Nodes 容器执行 logs、exec 等指令。在任意一台master节点执行以下指令:
$ kubectl apply -f "${CORE_URL}/apiserver-to-kubelet-rbac.yml.conf"
clusterrole.rbac.authorization.k8s.io "system:kube-apiserver-to-kubelet" configured
clusterrolebinding.rbac.authorization.k8s.io "system:kube-apiserver" configured
# 测试 logs
$ kubectl -n kube-system logs -f kube-scheduler-k8s-m2...
I0403 02:30:36.375935 1 server.go:555] Version: v1.10.0
I0403 02:30:36.378208 1 server.go:574] starting healthz server on 127.0.0.1:10251
设定master节点允许 Taint:
$ kubectl taint nodes node-role.kubernetes.io/master="":NoSchedule --all
node "k8s-m1" tainted
node "k8s-m2" tainted
node "k8s-m3" tainted
建立 TLS Bootstrapping RBAC 与 Secret
由于本次安装启用了 TLS 认证,因此每个节点的 kubelet 都必须使用 kube-apiserver 的 CA 的凭证后,才能与 kube-apiserver 进行沟通,而该过程需要手动针对每台节点单独签署凭证是一件繁琐的事情,且一旦节点增加会延伸出管理不易问题; 而 TLS bootstrapping 目标就是解决该问题,通过让 kubelet 先使用一个预定低权限使用者连接到 kube-apiserver,然后在对 kube-apiserver 申请凭证签署,当授权 Token 一致时,Node 节点的 kubelet 凭证将由 kube-apiserver 动态签署提供。具体作法可以参考 TLS Bootstrapping 与 Authenticating with Bootstrap Tokens。
首先在k8s-m1建立一个变量来产生BOOTSTRAP_TOKEN,并建立bootstrap-kubelet.conf的 Kubernetes config 档:
$ cd /etc/kubernetes/pki
$ export TOKEN_ID=$(openssl rand 3 -hex)
$ export TOKEN_SECRET=$(openssl rand 8 -hex)
$ export BOOTSTRAP_TOKEN=${TOKEN_ID}.${TOKEN_SECRET}
$ export KUBE_APISERVER="https://192.16.35.10:6443"
# bootstrap set cluster
$ kubectl config set-cluster kubernetes
--certificate-authority=ca.pem
--embed-certs=true
--server=${KUBE_APISERVER}
--kubeconfig=../bootstrap-kubelet.conf
# bootstrap set credentials
$ kubectl config set-credentials tls-bootstrap-token-user
--token=${BOOTSTRAP_TOKEN}
--kubeconfig=../bootstrap-kubelet.conf
# bootstrap set context
$ kubectl config set-context tls-bootstrap-token-user@kubernetes
--cluster=kubernetes
--user=tls-bootstrap-token-user
--kubeconfig=../bootstrap-kubelet.conf
# bootstrap use default context
$ kubectl config use-context tls-bootstrap-token-user@kubernetes
--kubeconfig=../bootstrap-kubelet.conf
若想要用手动签署凭证来进行授权的话,可以参考 Certificate。
接着在k8s-m1建立 TLS bootstrap secret 来提供自动签证使用:
$ cat <<EOF | kubectl create -f -
apiVersion: v1
kind: Secret
metadata:
name: bootstrap-token-${TOKEN_ID}
namespace: kube-system
type: bootstrap.kubernetes.io/token
stringData:
token-id: ${TOKEN_ID}
token-secret: ${TOKEN_SECRET}
usage-bootstrap-authentication: "true"
usage-bootstrap-signing: "true"
auth-extra-groups: system:bootstrappers:default-node-token
EOF
secret "bootstrap-token-65a3a9" created
在k8s-m1建立 TLS Bootstrap Autoapprove RBAC:
$ kubectl apply -f "${CORE_URL}/kubelet-bootstrap-rbac.yml.conf"
clusterrolebinding.rbac.authorization.k8s.io "kubelet-bootstrap" created
clusterrolebinding.rbac.authorization.k8s.io "node-autoapprove-bootstrap" created
clusterrolebinding.rbac.authorization.k8s.io "node-autoapprove-certificate-rotation" created
Kubernetes Nodes
本部分将说明如何建立与设定 Kubernetes Node 角色,Node 是主要执行容器实例(Pod)的工作节点。
在开始部署前,先在k8-m1将需要用到的文件复制到所有node节点上:
$ cd /etc/kubernetes/pki
$ for NODE in k8s-n1 k8s-n2 k8s-n3; do
echo "--- $NODE ---"
ssh ${NODE} "mkdir -p /etc/kubernetes/pki/"
ssh ${NODE} "mkdir -p /etc/etcd/ssl"
# Etcd
for FILE in etcd-ca.pem etcd.pem etcd-key.pem; do
scp /etc/etcd/ssl/${FILE} ${NODE}:/etc/etcd/ssl/${FILE}
done
# Kubernetes
for FILE in pki/ca.pem pki/ca-key.pem bootstrap-kubelet.conf; do
scp /etc/kubernetes/${FILE} ${NODE}:/etc/kubernetes/${FILE}
done
done
部署与设定
在每台node节点下载kubelet.service相关文件来管理 kubelet:
$ export CORE_URL="https://kairen.github.io/files/manual-v1.10/node"
$ mkdir -p /etc/systemd/system/kubelet.service.d
$ wget "${CORE_URL}/kubelet.service" -O /lib/systemd/system/kubelet.service
$ wget "${CORE_URL}/10-kubelet.conf" -O /etc/systemd/system/kubelet.service.d/10-kubelet.conf
若 cluster dns或domain有改变的话,需要修改10-kubelet.conf。
最后建立 var 存放信息,然后启动 kubelet 服务:
$ mkdir -p /var/lib/kubelet /var/log/kubernetes
$ systemctl enable kubelet.service && systemctl start kubelet.service
验证集群
完成后,在任意一台master节点并通过简单指令验证:
$ kubectl get csr
NAME AGE REQUESTOR CONDITION
csr-bvz9l 11m system:node:k8s-m1 Approved,Issued
csr-jwr8k 11m system:node:k8s-m2 Approved,Issued
csr-q867w 11m system:node:k8s-m3 Approved,Issued
node-csr-Y-FGvxZWJqI-8RIK_IrpgdsvjGQVGW0E4UJOuaU8ogk 17s system:bootstrap:dca3e1 Approved,Issued
node-csr-cnX9T1xp1LdxVDc9QW43W0pYkhEigjwgceRshKuI82c 19s system:bootstrap:dca3e1 Approved,Issued
node-csr-m7SBA9RAGCnsgYWJB-u2HoB2qLSfiQZeAxWFI2WYN7Y 18s system:bootstrap:dca3e1 Approved,Issued
$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
k8s-m1 NotReady master 12m v1.10.0
k8s-m2 NotReady master 11m v1.10.0
k8s-m3 NotReady master 11m v1.10.0
k8s-n1 NotReady node 32s v1.10.0
k8s-n2 NotReady node 31s v1.10.0
k8s-n3 NotReady node 29s v1.10.0
Kubernetes Core Addons 部署
当完成上面所有步骤后,接着需要部署一些插件,其中如Kubernetes DNS与Kubernetes Proxy等这种 Addons 是非常重要的。
Kubernetes Proxy
Kube-proxy 是实现 Service 的关键插件,kube-proxy 会在每台节点上执行,然后监听 API Server 的 Service 与 Endpoint 资源物件的改变,然后来依据变化执行 iptables 来实现网络的转发。这边我们会需要建议一个 DaemonSet 来执行,并且建立一些需要的 Certificates。
在k8s-m1下载kube-proxy.yml来建立 Kubernetes Proxy Addon:
$ kubectl apply -f "https://kairen.github.io/files/manual-v1.10/addon/kube-proxy.yml.conf"
serviceaccount "kube-proxy" created
clusterrolebinding.rbac.authorization.k8s.io "system:kube-proxy" created
configmap "kube-proxy" created
daemonset.apps "kube-proxy" created
$ kubectl -n kube-system get po -o wide -l k8s-app=kube-proxy
NAME READY STATUS RESTARTS AGE IP NODE
kube-proxy-8j5w8 1/1 Running 0 29s 192.16.35.16 k8s-n3
kube-proxy-c4zvt 1/1 Running 0 29s 192.16.35.11 k8s-m1
kube-proxy-clpl6 1/1 Running 0 29s 192.16.35.12 k8s-m2...
Kubernetes DNS
Kube DNS 是 Kubernetes 集群内部 Pod 之间互相沟通的重要 Addon,它允许 Pod 可以通过 Domain Name 方式来连接 Service,其主要由 Kube DNS 与 Sky DNS 组合而成,通过 Kube DNS 监听 Service 与 Endpoint 变化,来提供给 Sky DNS 信息,已更新解析位址。
在k8s-m1下载kube-proxy.yml来建立 Kubernetes Proxy Addon:
$ kubectl apply -f "https://kairen.github.io/files/manual-v1.10/addon/kube-dns.yml.conf"
serviceaccount "kube-dns" created
service "kube-dns" created
deployment.extensions "kube-dns" created
$ kubectl -n kube-system get po -l k8s-app=kube-dns
NAME READY STATUS RESTARTS AGE
kube-dns-654684d656-zq5t8 0/3 Pending 0 1m
这边会发现处于Pending状态,是由于 Kubernetes Pod Network 还未建立完成,因此所有节点会处于NotReady状态,而造成 Pod 无法被排程分配到指定节点上启动,由于为了解决该问题,下节将说明如何建立 Pod Network。
Calico Network 安装与设定
Calico 是一款纯 Layer 3 的资料中心网络方案(不需要 Overlay 网络),Calico 好处是它整合了各种云原生平台,且 Calico 在每一个节点利用 Linux Kernel 实现高效的 vRouter 来负责资料的转发,而当资料中心复杂度增加时,可以用 BGP route reflector 来达成。
本次不采用手动方式来建立 Calico 网络,若想了解可以参考 Integration Guide。
在k8s-m1下载calico.yaml来建立 Calico Network:
$ kubectl apply -f "https://kairen.github.io/files/manual-v1.10/network/calico.yml.conf"
configmap "calico-config" created
daemonset "calico-node" created
deployment "calico-kube-controllers" created
clusterrolebinding "calico-cni-plugin" created
clusterrole "calico-cni-plugin" created
serviceaccount "calico-cni-plugin" created
clusterrolebinding "calico-kube-controllers" created
clusterrole "calico-kube-controllers" created
serviceaccount "calico-kube-controllers" created
$ kubectl -n kube-system get po -l k8s-app=calico-node -o wide
NAME READY STATUS RESTARTS AGE IP NODE
calico-node-22mbb 2/2 Running 0 1m 192.16.35.12 k8s-m2
calico-node-2qwf5 2/2 Running 0 1m 192.16.35.11 k8s-m1
calico-node-g2sp8 2/2 Running 0 1m 192.16.35.13 k8s-m3
calico-node-hghp4 2/2 Running 0 1m 192.16.35.14 k8s-n1
calico-node-qp6gf 2/2 Running 0 1m 192.16.35.15 k8s-n2
calico-node-zfx4n 2/2 Running 0 1m 192.16.35.16 k8s-n3
这边若节点 IP 与网卡不同的话,请修改calico.yml文件。
在k8s-m1下载 Calico CLI 来查看 Calico nodes:
$ wget https://github.com/projectcalico/calicoctl/releases/download/v3.1.0/calicoctl -O /usr/local/bin/calicoctl
$ chmod u+x /usr/local/bin/calicoctl
$ cat <<EOF > ~/calico-rcexport ETCD_ENDPOINTS="https://192.16.35.11:2379,https://192.16.35.12:2379,https://192.16.35.13:2379"export ETCD_CA_CERT_FILE="/etc/etcd/ssl/etcd-ca.pem"export ETCD_CERT_FILE="/etc/etcd/ssl/etcd.pem"export ETCD_KEY_FILE="/etc/etcd/ssl/etcd-key.pem"
EOF
$ . ~/calico-rc
$ calicoctl node statusCalico process is running.
IPv4 BGP status+--------------+-------------------+-------+----------+-------------+| PEER ADDRESS | PEER TYPE | STATE | SINCE | INFO |+--------------+-------------------+-------+----------+-------------+| 192.16.35.12 | node-to-node mesh | up | 04:42:37 | Established || 192.16.35.13 | node-to-node mesh | up | 04:42:42 | Established || 192.16.35.14 | node-to-node mesh | up | 04:42:37 | Established || 192.16.35.15 | node-to-node mesh | up | 04:42:41 | Established || 192.16.35.16 | node-to-node mesh | up | 04:42:36 | Established |+--------------+-------------------+-------+----------+-------------+...
查看 pending 的 pod 是否已执行:
$ kubectl -n kube-system get po -l k8s-app=kube-dns
kubectl -n kube-system get po -l k8s-app=kube-dns
NAME READY STATUS RESTARTS AGE
kube-dns-654684d656-j8xzx 3/3 Running 0 10m
Kubernetes Extra Addons 部署
本节说明如何部署一些官方常用的 Addons,如 Dashboard、Heapster 等。
Dashboard
Dashboard 是 Kubernetes 社区官方开发的仪表板,有了仪表板后管理者就能够通过 Web-based 方式来管理 Kubernetes 集群,除了提升管理方便,也让资源视觉化,让人更直觉看见系统信息的呈现结果。
在k8s-m1通过 kubectl 来建立 kubernetes dashboard 即可:
$ kubectl apply -f https://raw.githubusercontent.com/kubernetes/dashboard/master/src/deploy/recommended/kubernetes-dashboard.yaml
$ kubectl -n kube-system get po,svc -l k8s-app=kubernetes-dashboard
NAME READY STATUS RESTARTS AGE
kubernetes-dashboard-7d5dcdb6d9-j492l 1/1 Running 0 12s
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes-dashboard ClusterIP 10.111.22.111 <none> 443/TCP 12s
这边会额外建立一个名称为open-api Cluster Role Binding,这仅作为方便测试时使用,在一般情况下不要开启,不然就会直接被存取所有 API:
$ cat <<EOF | kubectl create -f -
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: open-api
namespace: ""
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: cluster-admin
subjects:
- apiGroup: rbac.authorization.k8s.io
kind: User
name: system:anonymous
EOF
注意!管理者可以针对特定使用者来开放 API 存取权限,但这边方便使用直接绑在 cluster-admin cluster role。
完成后,就可以通过浏览器存取 Dashboard。
在 1.7 版本以后的 Dashboard 将不再提供所有权限,因此需要建立一个 service account 来绑定 cluster-admin role:
$ kubectl -n kube-system create sa dashboard
$ kubectl create clusterrolebinding dashboard --clusterrole cluster-admin --serviceaccount=kube-system:dashboard
$ SECRET=$(kubectl -n kube-system get sa dashboard -o yaml | awk '/dashboard-token/ {print $3}')
$ kubectl -n kube-system describe secrets ${SECRET} | awk '/token:/{print $2}'
eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJrdWJlLXN5c3RlbSIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VjcmV0Lm5hbWUiOiJkYXNoYm9hcmQtdG9rZW4tdzVocmgiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC5uYW1lIjoiZGFzaGJvYXJkIiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZXJ2aWNlLWFjY291bnQudWlkIjoiYWJmMTFjYzMtZjRlYi0xMWU3LTgzYWUtMDgwMDI3NjdkOWI5Iiwic3ViIjoic3lzdGVtOnNlcnZpY2VhY2NvdW50Omt1YmUtc3lzdGVtOmRhc2hib2FyZCJ9.Xuyq34ci7Mk8bI97o4IldDyKySOOqRXRsxVWIJkPNiVUxKT4wpQZtikNJe2mfUBBD-JvoXTzwqyeSSTsAy2CiKQhekW8QgPLYelkBPBibySjBhJpiCD38J1u7yru4P0Pww2ZQJDjIxY4vqT46ywBklReGVqY3ogtUQg-eXueBmz-o7lJYMjw8L14692OJuhBjzTRSaKW8U2MPluBVnD7M2SOekDff7KpSxgOwXHsLVQoMrVNbspUCvtIiEI1EiXkyCNRGwfnd2my3uzUABIHFhm0_RZSmGwExPbxflr8Fc6bxmuz-_jSdOtUidYkFIzvEWw2vRovPgs3MXTv59RwUw
复制token,然后贴到 Kubernetes dashboard。注意这边一般来说要针对不同 User 开启特定存取权限。
Heapster
Heapster 是 Kubernetes 社区维护的容器集群监控与效能分析工具。Heapster 会从 Kubernetes apiserver 取得所有 Node 信息,然后再通过这些 Node 来取得 kubelet 上的资料,最后再将所有收集到资料送到 Heapster 的后台储存 InfluxDB,最后利用 Grafana 来抓取 InfluxDB 的资料源来进行视觉化。
在k8s-m1通过 kubectl 来建立 kubernetes monitor 即可:
$ kubectl apply -f "https://kairen.github.io/files/manual-v1.10/addon/kube-monitor.yml.conf"
$ kubectl -n kube-system get po,svc
NAME READY STATUS RESTARTS AGE...
po/heapster-74fb5c8cdc-62xzc 4/4 Running 0 7m
po/influxdb-grafana-55bd7df44-nw4nc 2/2 Running 0 7m
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE...
svc/heapster ClusterIP 10.100.242.225 <none> 80/TCP 7m
svc/monitoring-grafana ClusterIP 10.101.106.180 <none> 80/TCP 7m
svc/monitoring-influxdb ClusterIP 10.109.245.142 <none> 8083/TCP,8086/TCP 7m···
完成后,就可以通过浏览器存取 Grafana Dashboard。
Ingress Controller
Ingress是利用 Nginx 或 HAProxy 等负载平衡器来曝露集群内服务的元件,Ingress 主要通过设定 Ingress 规格来定义 Domain Name 映射 Kubernetes 内部 Service,这种方式可以避免掉使用过多的 NodePort 问题。
在k8s-m1通过 kubectl 来建立 Ingress Controller 即可:
$ kubectl create ns ingress-nginx
$ kubectl apply -f "https://kairen.github.io/files/manual-v1.10/addon/ingress-controller.yml.conf"
$ kubectl -n ingress-nginx get po
NAME READY STATUS RESTARTS AGEdefault-http-backend-5c6d95c48-rzxfb 1/1 Running 0 7m
nginx-ingress-controller-699cdf846-982n4 1/1 Running 0 7m
这里也可以选择 Traefik 的 Ingress Controller。
测试 Ingress 功能
这边先建立一个 Nginx HTTP server Deployment 与 Service:
$ kubectl run nginx-dp --image nginx --port 80
$ kubectl expose deploy nginx-dp --port 80
$ kubectl get po,svc
$ cat <<EOF | kubectl create -f -
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
name: test-nginx-ingress
annotations:
ingress.kubernetes.io/rewrite-target: /
spec:
rules:
- host: test.nginx.com
http:
paths:
- path: /
backend:
serviceName: nginx-dp
servicePort: 80
EOF
通过 curl 来进行测试:
$ curl 192.16.35.10 -H 'Host: test.nginx.com'<!DOCTYPE html><html><head><title>Welcome to nginx!</title>...
# 测试其他 domain name 是否会回传 404
$ curl 192.16.35.10 -H 'Host: test.nginx.com1'default backend - 404
Helm Tiller Server
Helm 是 Kubernetes Chart 的管理工具,Kubernetes Chart 是一套预先组态的 Kubernetes 资源套件。其中Tiller Server主要负责接收来至 Client 的指令,并通过 kube-apiserver 与 Kubernetes 集群做沟通,根据 Chart 定义的内容,来产生与管理各种对应 API 物件的 Kubernetes 部署文档(又称为 Release)。
首先在k8s-m1安装 Helm tool:
$ wget -qO- https://kubernetes-helm.storage.googleapis.com/helm-v2.8.1-linux-amd64.tar.gz | tar -zx
$ sudo mv linux-amd64/helm /usr/local/bin/
另外在所有node节点安装 socat:
$ sudo apt-get install -y socat
接着初始化 Helm(这边会安装 Tiller Server):
$ kubectl -n kube-system create sa tiller
$ kubectl create clusterrolebinding tiller --clusterrole cluster-admin --serviceaccount=kube-system:tiller
$ helm init --service-account tiller...Tiller (the Helm server-side component) has been installed into your Kubernetes Cluster.Happy Helming!
$ kubectl -n kube-system get po -l app=helm
NAME READY STATUS RESTARTS AGE
tiller-deploy-5f789bd9f7-tzss6 1/1 Running 0 29s
$ helm versionClient: &version.Version{SemVer:"v2.8.1", GitCommit:"6af75a8fd72e2aa18a2b278cfe5c7a1c5feca7f2", GitTreeState:"clean"}Server: &version.Version{SemVer:"v2.8.1", GitCommit:"6af75a8fd72e2aa18a2b278cfe5c7a1c5feca7f2", GitTreeState:"clean"}
测试 Helm 功能
这边部署简单 Jenkins 来进行功能测试:
$ helm install --name demo --set Persistence.Enabled=false stable/jenkins
$ kubectl get po,svc -l app=demo-jenkins
NAME READY STATUS RESTARTS AGE
demo-jenkins-7bf4bfcff-q74nt 1/1 Running 0 2m
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
demo-jenkins LoadBalancer 10.103.15.129 <pending> 8080:31161/TCP 2m
demo-jenkins-agent ClusterIP 10.103.160.126 <none> 50000/TCP 2m
# 取得 admin 账号的密码
$ printf $(kubectl get secret --namespace default demo-jenkins -o jsonpath="{.data.jenkins-admin-password}" | base64 --decode);echo
r6y9FMuF2u
完成后,就可以通过浏览器存取 Jenkins Web。
测试完成后,即可删除:
$ helm ls
NAME REVISION UPDATED STATUS CHART NAMESPACE
demo 1 Tue Apr 10 07:29:51 2018 DEPLOYED jenkins-0.14.4 default
$ helm delete demo --purge
release "demo" deleted
更多 Helm Apps 可以到 Kubeapps Hub 寻找。
测试集群
SSH 进入k8s-m1节点,然后关闭该节点:
$ sudo poweroff
接着进入到k8s-m2节点,通过 kubectl 来检查集群是否能够正常执行:
# 先检查 etcd 状态,可以发现 etcd-0 因为关机而中断
$ kubectl get cs
NAME STATUS MESSAGE ERROR
scheduler Healthy ok
controller-manager Healthy ok
etcd-1 Healthy {"health": "true"}
etcd-2 Healthy {"health": "true"}
etcd-0 Unhealthy Get https://192.16.35.11:2379/health: net/http: request canceled while waiting for connection (Client.Timeout exceeded while awaiting headers)
# 测试是否可以建立 Pod
$ kubectl run nginx --image nginx --restart=Never --port 80
$ kubectl get po
NAME READY STATUS RESTARTS AGE
nginx 1/1 Running 0 22s