zoukankan      html  css  js  c++  java
  • 超大批量删除redis中无用key+配置

    目前线上一个单实例redis中无用的key太多,决定删除一部分。

    1、删除指定用户的key,使用redis的pipeline

    根据一定条件把需要删除的用户统计出来,放到一个表里面,表为 del_user(int user_id),rows大约在1千万。

    要删除的key为 "login:%s" %s匹配 user_id .

    写sql文如下:把sql文保存在一个文件里面,命名为 1.sql 

    SELECT CONCAT(

      "*2 ",  

      '$3 ',  
      'DEL ',  
      '$', LENGTH(redis_key), ' ',  
      redis_key, ' '
    )  
    FROM (  
      SELECT 
      CONCAT('login:',user_id) AS redis_key
      FROM del_user
    ) AS t;

      然后执行命令:

      mysql --raw --skip-column-names --default-character-set utf8 -h2.6.3.101 -P1067 -uroot -p'123456' test -A < /data/sql/1.sql | /data/redis/bin/redis-cli -a "password" -n 0 -p 6379 --pipe

     实际执行速度非常快,每分钟大概删除300多万个key。

    这里需要reids协议的知识点,可以参考:http://redis.io/topics/protocol

    2、删除模式匹配下的key,使用lua脚本

    比如有个需求,需要删除以":login"结尾的所有key, 业务中key的设计是这样的 %s:login

    第一种方式:

    redis-cli -a "password" -n 0 -p 6379 keys "*:login" | xargs -i redis-cli -a "password" -n 0 -p 6379 del {}

    这样一个坏处每次都要建立一个连接,量小的话还可以接受,量大的话,效率不行。

    第二种方式:

    redis-cli -a "password" -n 0 -p 6379  EVAL "return redis.call('del', unpack(redis.call('keys', ARGV[1])))" 0 *:login

    这样的方式,通过内置的 Lua 解释器,可以使用 EVAL 命令对 Lua 脚本

    但这种处理方式,量大的情况下,lua函数unpack会出现问题,会报错误

    (error) ERR Error running script (call to f_e177a091510d969af3b388ee986dbe6658df6b57): user_script:1: too many results to unpack 

    第三种方式:

    实际上是对第二种方式的改进,一次性unpack太多会出问题,那就干脆一次5000吧,这样就不会有问题了

    redis-cli -a "password" -n 0 -p 6379 EVAL "local keys = redis.call('keys', ARGV[1]) for i=1,#keys,5000 do redis.call('del', unpack(keys, i, math.min(i+4999, #keys))) end return #keys" 0 *:login

    这段脚本的意思,首先定义一个数组 keys,里面存储了模式匹配的所有的以 *:login结尾的key,然后for循环,每次处理5000个key,也就是说每次del 5000个key。

    目前测试下来,1000万个key,也就需要2分30多秒,速度非常快。

    这里需要redis命令EVAL的知识点,可以参考:http://redis.io/commands/eval

    注意:以上是基于redis2.6.14来处理的,keys在线上是禁用的。

     

    自从redis2.8以后就开始支持scan命令,模式匹配可以采取下面的形式来批删除大量的key

    redis-cli -a "password" -n 0 -p 6379 --scan --pattern "*:login" | xargs -L 5000 redis-cli -a "password" -n 0 -p 6379 DEL

    速度处理也是非常快的

    使用redis缓存的实践总结

     分类:
         使用场景一:高频率使用但不频繁更新的业务数据。由于不频繁更新,所以可以在系统启动时,从数据库中加载,放入redis。如果更新,需重启服务,当然这比较笨。更好的做法下面会列出。

            使用场景二:高频率使用更新还算频繁的业务数据。由于有一定频率的更新,所以可以在用户访问时,查询缓存,如果没有值,则从数据库中加载入redis,并设置过期时间。这样,过期时间内的访问就都走缓存了。这种策略也有问题,就是大并发访问时,容易造成数据库瞬间高并发读,如果程序再写的烂点,查询语句再复杂点,那可能造成数据库死锁。更好的办法,下面列出。

            使用场景三:高频率使用高频率更新的业务数据。这种数据就需要在写入数据库的同时放入缓存,不设置过期时间,这样用户每次访问都走缓存。为了保证数据的一致,还有数据对内存的占用,还需要有一些额外的策略。

     
            对于场景一:更好的做法是在系统启动的同时,利用redis的pub/sub功能,启动一个监听通道。当数据发生更新时,往通道publish一个消息,系统接收到消息后,重新从数据库中加载数据,放入缓存。这样系统实现了无中断的更新缓存。

            对于场景二:更好的做法是单独启动一个定时任务,把定时任务看做是一个用户,他每隔一段时间从数据库中读取数据,然后放入缓存。而前台用户访问的始终是缓存数据,不会触发数据库的相关操作。这个策略也可以用在场景一中。

     
            当然,使用memcached也可以实现类似的功能,但是我更喜欢用redis,基于他强大的性能和数据结构,可以实现多种复杂的业务需求。
     
     

    日常中有时为了做实验需要向redis导入大量数据

    下面提供一些思路:

    1、循环导入

    key的类型为string,下面是例子脚本

    for((i=1;i<=1000000;i++))
    do
    redis-cli -a "password" -n 0 -p 6379 set "k"$i "v"$i
    done

    这样的坏处显而易见,每次都要建立连接,效率低下,不可取。

    当然你导入几百几千个key倒是没什么问题。

    2、pipeline方式导入

    先把预先的命令导入到一个文本里面

    for((i=1;i<=1000000;i++))
    do
    echo "set k$i v$i" >> /tmp/_t.txt
    done

    执行格式转换

    unix2dos /tmp/_t.txt 

    pipeline导入

    cat /tmp/_t.txt | redis-cli -a "password" -n 0 -p 6379 --pipe

    以上测试下来,100万的数据,在几十秒中搞定,速度嗷嗷的

    参考:http://redis.io/topics/mass-insert

    还有一种情况,比如需要把MySQL中的数据批量导入redis

    假如目前需要把用户元宝表导入到redis中,表 user_gold(user_id, amount) ,每个用户一个key,string类型。

    我们可以这样操作:

    -- 1.sql 保存sql到 1.sql中

    SELECT CONCAT(  
      "*3 ",  
      '$3 ',  
      'SET ',  
      '$', LENGTH(redis_key), ' ',  
      redis_key, ' ',
      '$', LENGTH(redis_value), ' ',
      redis_value, ' '
    )  
    FROM (  
      SELECT 
      CONCAT('user:gold:',user_id) AS redis_key,
      amount AS redis_value
      FROM test.user_gold
    ) AS t;

    执行导入操作:

    mysql --raw --skip-column-names -h2.6.3.101 -P1067 -uroot -p'123456' test -A < /data/sql/1.sql | /data/redis/bin/redis-cli -a "password" -n 0 -p 6379 --pipe

    redis简介

     分类:
    简介

    Redis是一种高级key-value的NoSQL数据库。它跟memcached类似,不过数据可以持久化,而且支持的数据类型很丰富。有字符串,链表,集 合。所以Redis也可以被看成是一个数据结构服务器。本次主要考虑key-list。

    Redis的所有数据都是保存在内存中,然后不定期的通过异步方式保存到磁盘上。

    【注】NoSQL(NoSQL = Not Only SQL ),指的是非关系型的数据库,相对传统的关系数据库:

    1、 对数据库高并发读写的需求

    2、对海量数据的高效率存储和访问的需求

    3、对数据库的高可扩展性和高可用性的需求

    安装、启动

    tar -zxvf redis-2.4.2.tar.gz

    cd redis-2.4.2/

    make

    make install

    ./redis-server /root/redis-2.4.2/redis.conf

    使用、数据测试

    主要研究key-list方式

    for (int i = 0; i < 10000000; i++) {

    jedis.lpush(key, String.valueOf(i));

    }

    通过该方式一次插入1千万条记录,所需时间为1小时40分钟到2小时,插入10万条记录1分钟左右。

    在测试中发现一个问题,无法一次取出1千万条记录,对于key-list方式。再多就会出现read timed out,即使在服务端不限制timeout时间也会出现。

    使用jedis操作,版本2.0.0,通过使用连接池,设置客户端的超时时间,可以解决read timed out问题,取1千万条记录需要27秒,1百万条记录2秒(平均每条数据10b),在进行取操作的时候,redis的内存使用会增加,与所取数据量有关,取操作完成后该部分内存释放。

    以下数据都是估计值

    取1百万条记录约2秒(平均每条数据约10b)

    取1百万条记录约8秒(平均每条数据约100b),和每条数据大小也有关系

    Java中连接池的创建和使用

    JedisPoolConfig config = new JedisPoolConfig();

                config.setMaxActive(100);

                config.setMaxIdle(20);

                config.setMaxWait(1000l);

            pool = new JedisPool(config, "192.168.126.124", 6379, 10*1000, "password");

    /*

    config:连接池配置

    "192.168.126.124":ip地址

    6379:端口

    10*1000:超时时间 (ms)

    "password":登录密码

    */

    Jedis jedis=pool.getResource();

    pool.returnResource(jedis);

     

     

    jedis操作list介绍

    lpush(key) 在key对应list的头部添加字符串元素,返回1表示成功,0表示key存在且不是list类型
    rpush(key)  同上,在尾部添加
    llen(key)  返回key对应list的长度,key不存在返回0,如果key对应类型不是list返回错误
    lrange(key,start,end) 返回指定区间内的元素,下标从0开始,负值表示从后面计算,-1表示倒数第一个元素 ,key不存在返回空列表
    ltrim(key,start,end)  截取list,保留指定区间内元素,成功返回1,key不存在返回错误
    lset( key,index,value) 设置list中指定下标的元素值,成功返回1,key或者下标不存在返回错误
    lrem(key,count,value) 从key对应list中删除count个和value相同的元素。count为0时候删除全部
    lpop(key)从list的头部删除元素,并返回删除元素。如果key对应list不存在或者是空返回nil,如果key对应值不是list返回错误
    rpop(key) 同上,但是从尾部删除

     

    规划使用方式

    根据数据量分配足够内存

    普遍使用key-list方式存储数据,可将key理解为表名,list理解为记录列表,从而经行增删改查。

    因为redis都是已字符串存储,对于list的每一个value可以考虑使用json数据结构,在底层做一个json与对象互转的封装。

    就目前的了解,在使用redis的key-list方式,在通过key获取list后,对list的查询,修改还没有发现很好的方式,目前只能全部取出再经行查询。对list的更新只能通过下标经行。

    持久化

    Redis所具备的持久化是使用文件快照的方式,可以在配置文件中配置快照持久化的策略,可以设置多个,这里要考虑到具体的数据变化规律和性能的考虑(对磁盘文件的读写也较为费时),还有一点redis的文件快照持久化非增量持久化,也就是说每次进行快照都是全量数据。对于该种策略文件快照,在断电、宕机的情况下会丢失尚未进行快照的数据,在设置策略的时候需要考虑。

    插入速度与每条记录大小关系不大,在进行save 60 10000策略插入1千万条数据与没有持久化策略插入1千万时间分别是 1小时50分钟、1小时20分钟

    文件快照设置方式如下:

    #save 900 1       在900秒内 如果有1条记录更新经行快照

    #save 300 10      在300秒内 如果有10条记录更新经行快照

    #save 60 10000    在60秒内 如果有10000条记录更新经行快照

    事务

    redis对事务的支持目前还比较简单。redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。 由于redis是单线程来处理所有client的请求的所以做到这点是很容易的。一般情况下redis在接受到一个client发来的命令后会立即处理并 返回处理结果,但是当一个client在一个连接中发出multi命令有,这个连接会进入一个事务上下文,该连接后续的命令并不是立即执行,而是先放到一个队列中。当从此连接受到exec命令后,redis会顺序的执行队列中的所有命令。并将所有命令的运行结果打包到一起返回给client.然后此连接就 结束事务上下文.

    Transaction t=jedis.multi();

    System.out.println(t.lrange(key, 0, 1));

    System.out.println(t.lrange(key, 0, 1));

    t.exec();

    基本配置参数

    1. Redis默认不是以守护进程的方式运行,可以通过该配置项修改,使用yes启用守护进程

        daemonize no

    2. 当Redis以守护进程方式运行时,Redis默认会把pid写入/var/run/redis.pid文件,可以通过pidfile指定

        pidfile /var/run/redis.pid

    3. 指定Redis监听端口,默认端口为6379,作者在自己的一篇博文中解释了为什么选用6379作为默认端口,因为6379在手机按键上MERZ对应的号码,而MERZ取自意大利歌女Alessia Merz的名字

        port 6379

    4. 绑定的主机地址

        bind 127.0.0.1

    5.当 客户端闲置多长时间后关闭连接,如果指定为0,表示关闭该功能

        timeout 300

    6. 指定日志记录级别,Redis总共支持四个级别:debug、verbose、notice、warning,默认为verbose

        loglevel verbose

    7. 日志记录方式,默认为标准输出,如果配置Redis为守护进程方式运行,而这里又配置为日志记录方式为标准输出,则日志将会发送给/dev/null

        logfile stdout

    8. 设置数据库的数量,默认数据库为0,可以使用SELECT <dbid>命令在连接上指定数据库id

        databases 16

    9. 指定在多长时间内,有多少次更新操作,就将数据同步到数据文件,可以多个条件配合

        save <seconds> <changes>

        Redis默认配置文件中提供了三个条件:

        save 900 1

        save 300 10

        save 60 10000

        分别表示900秒(15分钟)内有1个更改,300秒(5分钟)内有10个更改以及60秒内有10000个更改。

     

    10. 指定存储至本地数据库时是否压缩数据,默认为yes,Redis采用LZF压缩,如果为了节省CPU时间,可以关闭该选项,但会导致数据库文件变的巨大

        rdbcompression yes

    11. 指定本地数据库文件名,默认值为dump.rdb

        dbfilename dump.rdb

    12. 指定本地数据库存放目录

        dir ./

    13. 设置当本机为slav服务时,设置master服务的IP地址及端口,在Redis启动时,它会自动从master进行数据同步

        slaveof <masterip> <masterport>

    14. 当master服务设置了密码保护时,slav服务连接master的密码

        masterauth <master-password>

    15. 设置Redis连接密码,如果配置了连接密码,客户端在连接Redis时需要通过AUTH <password>命令提供密码,默认关闭

        requirepass foobared

    16. 设置同一时间最大客户端连接数,默认无限制,Redis可以同时打开的客户端连接数为Redis进程可以打开的最大文件描述符数,如果设置 maxclients 0,表示不作限制。当客户端连接数到达限制时,Redis会关闭新的连接并向客户端返回max number of clients reached错误信息

        maxclients 128

    17. 指定Redis最大内存限制,Redis在启动时会把数据加载到内存中,达到最大内存后,Redis会先尝试清除已到期或即将到期的Key,当此方法处理 后,仍然到达最大内存设置,将无法再进行写入操作,但仍然可以进行读取操作。Redis新的vm机制,会把Key存放内存,Value会存放在swap区

        maxmemory <bytes>

    18. 指定是否在每次更新操作后进行日志记录,Redis在默认情况下是异步的把数据写入磁盘,如果不开启,可能会在断电时导致一段时间内的数据丢失。因为 redis本身同步数据文件是按上面save条件来同步的,所以有的数据会在一段时间内只存在于内存中。默认为no

        appendonly no

    19. 指定更新日志文件名,默认为appendonly.aof

         appendfilename appendonly.aof

    20. 指定更新日志条件,共有3个可选值: 
        no:表示等操作系统进行数据缓存同步到磁盘(快) 
        always:表示每次更新操作后手动调用fsync()将数据写到磁盘(慢,安全) 
        everysec:表示每秒同步一次(折衷,默认值)

        appendfsync everysec

     

    21. 指定是否启用虚拟内存机制,默认值为no,简单的介绍一下,VM机制将数据分页存放,由Redis将访问量较少的页即冷数据swap到磁盘上,访问多的页面由磁盘自动换出到内存中(在后面的文章我会仔细分析Redis的VM机制)

         vm-enabled no

    22. 虚拟内存文件路径,默认值为/tmp/redis.swap,不可多个Redis实例共享

         vm-swap-file /tmp/redis.swap

    23. 将所有大于vm-max-memory的数据存入虚拟内存,无论vm-max-memory设置多小,所有索引数据都是内存存储的(Redis的索引数据 就是keys),也就是说,当vm-max-memory设置为0的时候,其实是所有value都存在于磁盘。默认值为0

         vm-max-memory 0

    24. Redis swap文件分成了很多的page,一个对象可以保存在多个page上面,但一个page上不能被多个对象共享,vm-page-size是要根据存储的 数据大小来设定的,作者建议如果存储很多小对象,page大小最好设置为32或者64bytes;如果存储很大大对象,则可以使用更大的page,如果不 确定,就使用默认值

         vm-page-size 32

    25. 设置swap文件中的page数量,由于页表(一种表示页面空闲或使用的bitmap)是在放在内存中的,,在磁盘上每8个pages将消耗1byte的内存。

         vm-pages 134217728

    26. 设置访问swap文件的线程数,最好不要超过机器的核数,如果设置为0,那么所有对swap文件的操作都是串行的,可能会造成比较长时间的延迟。默认值为4

         vm-max-threads 4

    27. 设置在向客户端应答时,是否把较小的包合并为一个包发送,默认为开启

        glueoutputbuf yes

    28. 指定在超过一定的数量或者最大的元素超过某一临界值时,采用一种特殊的哈希算法

        hash-max-zipmap-entries 64

        hash-max-zipmap-value 512

    29. 指定是否激活重置哈希,默认为开启(后面在介绍Redis的哈希算法时具体介绍)

        activerehashing yes

    30. 指定包含其它的配置文件,可以在同一主机上多个Redis实例之间使用同一份配置文件,而同时各个实例又拥有自己的特定配置文件

        include /path/to/local.conf

  • 相关阅读:
    Centos 实现SSH证书登录
    Spring Boot 拦截器的使用
    Spring Boot 内置定时器的使用
    Spring Boot 整合Druid数据源(一)
    Spring Boot 整合滑动验证
    asp.ent core swagger
    Dapper.Contrib
    SonarQube
    Endpoint.Binding = new BasicHttpBinding(BasicHttpSecurityMode.Transport)
    wcf messageEncoding="Mtom"
  • 原文地址:https://www.cnblogs.com/micro-chen/p/5736136.html
Copyright © 2011-2022 走看看