Given two integers dividend
and divisor
, divide two integers without using multiplication, division and mod operator.
Return the quotient after dividing dividend
by divisor
.
The integer division should truncate toward zero.
Example 1:
Input: dividend = 10, divisor = 3 Output: 3
Example 2:
Input: dividend = 7, divisor = -3 Output: -2
Note:
- Both dividend and divisor will be 32-bit signed integers.
- The divisor will never be 0.
- Assume we are dealing with an environment which could only store integers within the 32-bit signed integer range: [−231, 231 − 1]. For the purpose of this problem, assume that your function returns 231 − 1 when the division result overflows.
思考:我们先暂不考虑特殊的输入,一开始的方法是被除数不停的减去除数,直到余数小于除数。结果是超时。想了想,确实,如果被除数是个很大的,除数是个很小的数,那么时间确实很长。
怎么办呢?能不能减去更大的数,而不是除数本身。看看题目,又不能用乘法,除法,取模。想到底层向左移动一位,解释出的整数值就会变成原来的2倍。
就有了这样的解法:首先不停的对除数乘以2,乘以2,乘以2,直到最靠近被除数,然后减去这个数。如此往复。具体的时间复杂度我也不是很清楚,不过既然用到了指数增长,应该很快吧。
这样还不行,还有很多特殊用例,最小负数-2147483648,最大整数2147483647,特殊输入的个数总是只有几个,我进行的特殊的处理就行了。
1 class Solution { 2 public: 3 int divide(int dividend, int divisor) { 4 //for special divisor==-2147483648. 5 if(divisor==-2147483648) { 6 if(dividend==-2147483648) 7 return 1; 8 else 9 return 0; 10 } 11 12 13 int count = 0; 14 //for special dividend==-2147483648. 15 if(dividend==-2147483648) { 16 if(divisor==1) 17 return -2147483648; 18 if(divisor==-1) 19 return 2147483647; 20 if(divisor<0) { 21 dividend = dividend - divisor; 22 count++; 23 }else { 24 dividend = dividend + divisor; 25 count++; 26 } 27 } 28 //for most case 29 int negative; 30 if((dividend < 0 && divisor > 0) || (dividend > 0 && divisor < 0)) 31 negative = 1; 32 else 33 negative = 0; 34 35 36 dividend = dividend > 0 ? dividend : -dividend; 37 38 divisor = divisor > 0 ? divisor : -divisor; 39 40 int step = divisor; 41 int len = 1; 42 43 while(dividend>=divisor) { 44 while((step < 2147483647/2) && ((step<<1)<dividend)) { 45 step = step <<1; 46 len = len<<1; 47 } 48 dividend = dividend - step; 49 count = count + len; 50 51 len = 1; 52 step = divisor; 53 } 54 55 count = negative? -count : count; 56 return count; 57 } 58 };