zoukankan      html  css  js  c++  java
  • 朴素贝叶斯应用:垃圾邮件分类

    import csv
    # 读数据
    file_path = r'EmailData.txt'
    EmailData = open(file_path,'r',encoding='utf-8')
    Email_data = []
    Email_target = []
    csv_reader = csv.reader(EmailData,delimiter='	')
    # 将数据分别存入数据列表和目标分类列表
    for line in csv_reader:
        Email_data.append(line[1])
        Email_target.append(line[0])
    EmailData.close()
    
    # 把无意义的符号都替换成空格
    Email_data_clear = []
    for line in Email_data:
        # line :'Go until jurong point, crazy.. Available only in bugis n great world la e buffet...'
        # 每一行都去掉无意义符号并按空格分词
        for char in line:
            if char.isalpha() is False:
                # 不是字母,发生替换操作:
                newString = line.replace(char," ")
        tempList = newString.split(" ")
        # 将处理好后的一行数据追加到存放干净数据的列表
        Email_data_clear.append(tempList)
    
    # 去掉长度不大于3的词和没有语义的词
    Email_data_clear2 = []
    for line in Email_data_clear:
        tempList = []
        for word in line:
            if word != '' and len(word) > 3 and word.isalpha():
                tempList.append(word)
        tempString = ' '.join(tempList)
        Email_data_clear2.append(tempString)
    Email_data_clear = Email_data_clear2
    
    # 将数据分为训练集和测试集
    from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test = train_test_split(Email_data_clear2,Email_target,test_size=0.3,random_state=0,stratify=Email_target)
    
    # 建立数据的特征向量
    from sklearn.feature_extraction.text import TfidfVectorizer
    tfidf = TfidfVectorizer()
    X_train = tfidf.fit_transform(x_train)
    X_test = tfidf.transform(x_test)
    
    # 观察向量
    import numpy as np
    X_train = X_train.toarray()
    X_test = X_test.toarray()
    X_train.shape
    # 输出不为0的列
    for i in range(X_train.shape[0]):
        for j in range(X_train.shape[1]):
            if X_train[i][j] != 0:
                print(i,j,X_train[i][j])
    
    # 建立模型
    from sklearn.naive_bayes import GaussianNB
    gnb = GaussianNB()
    module = gnb.fit(X_train,y_train)
    y_predict = module.predict(X_test)
    
    # 输出模型分类的各个指标
    from sklearn.metrics import classification_report
    cr = classification_report(y_predict,y_test)
    print(cr)

      

  • 相关阅读:
    [BZOJ1433][luogu_P2055][ZJOI2009]假期的宿舍
    [BZOJ1280][POJ1149]Emmy卖猪pigs
    [BZOJ1066][luogu_P2472][SCOI2007]蜥蜴
    [nowcoder_Wannafly挑战赛4_F]线路规划
    [SPOJ839]Optimal Marks
    [BZOJ1497][NOI2006]最大获利
    Django_orm脚本
    Function
    Class
    Python核心编程
  • 原文地址:https://www.cnblogs.com/miehahaha/p/10055353.html
Copyright © 2011-2022 走看看