zoukankan      html  css  js  c++  java
  • matlib实现梯度下降法(序一)

    数据来源:http://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant

    数据描述:

    有四个输入特征,这些数据来自电厂,这四个特征和电量输入有关系,现在通过线性回归求它们之间关系的模型参数。
    - 温度,Temperature (T) in the range 1.81°C and 37.11°C,
    - 大气压,Ambient Pressure (AP) in the range 992.89-1033.30 milibar,
    - 相对湿度,Relative Humidity (RH) in the range 25.56% to 100.16%
    - 排气容积,Exhaust Vacuum (V) in teh range 25.36-81.56 cm Hg
    - 输出电力百万瓦:Net hourly electrical energy output (EP) 420.26-495.76 MW
    The averages are taken from various sensors located around the plant that record the ambient variables every second. The variables are given without normalization.

    注意,这些数据没有归一化,由于四个特征大小差别很大,所以要进行归一化操作,具体操作参照http://www.cnblogs.com/mikewolf2002/p/7560748.html 3.4节。

    总共数据9568条数据,我们选取前9000条数据为训练数据,放在train.txt,后面568条数据为验证数据,放在verify.txt

    clear all; close all; clc;
    data = load('train.txt');
    x = data(:,1:4); %温度,大气压,湿度,排气容积
    y = data(:,5); %输出电力
    m = length(y); % 样本数目
    x = [ones(m, 1), x]; % 输入特征增加一列,x0=1
    meanx = mean(x);%求均值
    sigmax = std(x);%求标准偏差
    x(:,2) = (x(:,2)-meanx(2))./sigmax(2);
    x(:,3) = (x(:,3)-meanx(3))./sigmax(3);
    x(:,4) = (x(:,4)-meanx(4))./sigmax(4);
    x(:,5) = (x(:,5)-meanx(5))./sigmax(5);
    theta = zeros(size(x(1,:)))'; % 初始化theta
    
    MAX_ITR = 1500;%最大迭代数目
    alpha = 0.1; %学习率
    i = 0;
    while(i<MAX_ITR)
       grad =  (1/m).*x' * ((x * theta) - y);%求出梯度
       theta = theta - alpha .* grad;%更新theta
       if(i>2)
           delta = old_theta-theta;
           delta_v = delta.*delta;
           if(delta_v<0.000000000000001)%如果两次theta的内积变化很小,退出迭代
               break;
           end
       end
       old_theta = theta;
       %theta
       i=i+1;
    end
    data1 = load('verify.txt');
    x1 = data1(:,1:4); %温度,压力,适度,压强
    y1 = data1(:,5); %输出电力
    m1 = length(y1); % 样本数目
    x1 = [ones(m1, 1), x1]; % 输入特征增加一列,x0=1
    
    meanx1 = mean(x1);%求均值
    sigmax1 = std(x1);%求标准偏差
    x1(:,2) = (x1(:,2)-meanx1(2))./sigmax1(2);
    x1(:,3) = (x1(:,3)-meanx1(3))./sigmax1(3);
    x1(:,4) = (x1(:,4)-meanx1(4))./sigmax1(4);
    x1(:,5) = (x1(:,5)-meanx1(5))./sigmax1(5);
    
    y2 = x1*theta;
    y2
    View Code

    y1为原始验证数据结果,y2为预测结果,从下面图中看到y1/y2都挺接近的。


    image

  • 相关阅读:
    vue官方实例-组件
    数据处理-js
    图片大于div时的居中显示
    angularjs select通过动态加载option有空白项的处理方法-
    背景图片自适应div
    input-text
    input-number-required
    input-number-not-required
    null与undefined的区别?
    是true还是false呢?
  • 原文地址:https://www.cnblogs.com/mikewolf2002/p/8119734.html
Copyright © 2011-2022 走看看