MyBatis RedisCache 的项目地址
http://mybatis.org/redis-cache/
https://github.com/mybatis/redis-cache
这是MyBatis官方的二级缓存的Redis实现, 因为其依赖于Jedis和固定的redis.properties, 和Spring Boot集成较为麻烦, 在Spring Boot 2.1.x中使用还会报RedisConfig初始化错误.
实际项目使用中, 经过一些修改使其能正常使用, 记录如下
使其正常运行
首先不要用pom的jar包引入, 直接到github项目地址上下载源代码, 需要的只是 src/main/java/org/mybatis/caches/redis/ 目录下的文件, 将其放到自己的项目里.
其次, 现在的源码中, 对redis.properties要求其中各项配置名称要以redis.为前缀, 和jar包引用时的要求不一样.
这样基本就能启动运行了
集成到Spring Boot的配置
如果不希望单独做一个redis.properties的配置文件, 可以加上一个静态引用, 例如
/**
* Cons:
* 1. Memory issues: if you redeploy the WAR without restarting the VM, you end up with 2 application contexts in the
* same VM: the one attached to the static field of ApplicationContextHolder and the new one that is stored in the
* ServletContext. This is just the same issue as the commons-logging memory issue.
* 2. Tests: if you use spring tests, you will have multiple application contexts in the same VM when running a suite,
* but only the one loaded from the first test is stored in the static field.
* 3. Application context hierarchy: It is quite common to have a "services application context" and a "web application
* context" (and a DispatcherServlet application context), each one being a child of the previous one. Only the root
* (services) application context will be stored in the static variable, and thus you have a lot of beans that are not
* accessible.
*
* Though, it's safe to use this in a java -jar application.
*/
@Component
public class ApplicationContextHolder implements ApplicationContextAware {
private static ApplicationContext context;
/**
* Returns the Spring managed bean instance of the given class type if it exists.
* Returns null otherwise.
*/
public static <T> T getBean(Class<T> beanClass) {
return context.getBean(beanClass);
}
@SuppressWarnings("unchecked")
public static <T> T getBean(String name) {
return (T) context.getBean(name);
}
@Override
public void setApplicationContext(ApplicationContext context) throws BeansException {
// store ApplicationContext reference to access required beans later on
synchronized (this) {
if (ApplicationContextHolder.context == null) {
ApplicationContextHolder.context = context;
}
}
}
}
然后, 就可以在RedisCache.java中, 静态引用SysConfig了, 将其中初始化那一步修改为
public MyBatisCache(final String id) {
if (id == null) {
throw new IllegalArgumentException("Cache instances require an ID");
}
this.id = id;
redisConfig = new MyBatisCacheConfig();
SysConfig sysConfig = ApplicationContextHolder.getBean(SysConfig.class);
redisConfig.setHost(sysConfig.getRedisMybatis().getHost());
redisConfig.setPort(sysConfig.getRedisMybatis().getPort());
redisConfig.setPassword(sysConfig.getRedisMybatis().getPassword());
redisConfig.setDatabase(sysConfig.getRedisMybatis().getDatabase());
...
这样就可以在mapper初始化的时候拿到已经赋值的配置信息, 完成mapper对应的RedisCache实例的初始化.
MyBatis的缓存过期机制, flushInterval参数
在实际测试中, 发现Redis中的缓存数据TTL为-1, 在Hash中的key也无过期时间信息, 怀疑RedisCache的实现是否能正常处理缓存过期, 因此一路追查到了MyBatis的代码.
MyBatis在每个Mapper中, 可以设置参数 flushInterval 用来控制缓存的过期时间, 这个参数, 在 MapperBuilderAssistant 中, 被设置为Cache的clearInternal
public Cache useNewCache(Class<? extends Cache> typeClass,
Class<? extends Cache> evictionClass,
Long flushInterval,
Integer size,
boolean readWrite,
boolean blocking,
Properties props) {
Cache cache = new CacheBuilder(currentNamespace)
.implementation(valueOrDefault(typeClass, PerpetualCache.class))
.addDecorator(valueOrDefault(evictionClass, LruCache.class))
.clearInterval(flushInterval)
.size(size)
.readWrite(readWrite)
.blocking(blocking)
.properties(props)
.build();
configuration.addCache(cache);
currentCache = cache;
return cache;
}
而后在CacheBuilder中, 会根据这个参数, 判断是否生成代理类ScheduledCache
private Cache setStandardDecorators(Cache cache) {
try {
MetaObject metaCache = SystemMetaObject.forObject(cache);
if (size != null && metaCache.hasSetter("size")) {
metaCache.setValue("size", size);
}
if (clearInterval != null) {
cache = new ScheduledCache(cache);
((ScheduledCache) cache).setClearInterval(clearInterval);
}
if (readWrite) {
cache = new SerializedCache(cache);
}
cache = new LoggingCache(cache);
cache = new SynchronizedCache(cache);
if (blocking) {
cache = new BlockingCache(cache);
}
return cache;
} catch (Exception e) {
throw new CacheException("Error building standard cache decorators. Cause: " + e, e);
}
}
ScheduledCache内部存储了一个变量lastClear, 用来记录最后一次清空缓存的时间, 在get, put, remove等各个操作前, 会判断是否需要清空, 注意是整个namespace的缓存清空.
private boolean clearWhenStale() {
if (System.currentTimeMillis() - lastClear > clearInterval) {
clear();
return true;
}
return false;
}
@Override
public void putObject(Object key, Object object) {
clearWhenStale();
delegate.putObject(key, object);
}
@Override
public Object getObject(Object key) {
return clearWhenStale() ? null : delegate.getObject(key);
}
由此可以看出, MyBatis的缓存过期管理机制还是比较粗糙的, 并且依赖本地的变量, 同样的LRU机制也是依赖本地.
在分布式系统中使用MyBatis时如果开启缓存, 需要注意这个问题,
1. 各个节点对于缓存的清空时间分别计划, 实际上是叠加的, 如果设置的缓存时间为10分钟, 运行着三个节点, 并且节点都不断有查询请求, 那么在10分钟之间至少会被清空三次.
2. 缓存的过期, 是整体进行的, 无论期间产生的数据从何时开始, 在何时被访问, 有可能一个缓存刚刚创建就被清空了.
建议的解决方案
1. 关闭 MyBatis 的 flushInterval , 这样就不存在缓存频繁清空的问题, 使用全局的时间任务来触发缓存清空操作
2. 将decorators下的机制, 也改为使用集中的存储
3. 对namespace下的缓存数据, 是否可以在值中增加过期时间, 将过期时间粒度细化到单个结果.