MyBatis RedisCache 的项目地址
http://mybatis.org/redis-cache/
https://github.com/mybatis/redis-cache
这是MyBatis官方的二级缓存的Redis实现, 因为其依赖于Jedis和固定的redis.properties, 和Spring Boot集成较为麻烦, 在Spring Boot 2.1.x中使用还会报RedisConfig初始化错误.
实际项目使用中, 经过一些修改使其能正常使用, 记录如下
使其正常运行
首先不要用pom的jar包引入, 直接到github项目地址上下载源代码, 需要的只是 src/main/java/org/mybatis/caches/redis/ 目录下的文件, 将其放到自己的项目里.
其次, 现在的源码中, 对redis.properties要求其中各项配置名称要以redis.为前缀, 和jar包引用时的要求不一样.
这样基本就能启动运行了
集成到Spring Boot的配置
如果不希望单独做一个redis.properties的配置文件, 可以加上一个静态引用, 例如
/** * Cons: * 1. Memory issues: if you redeploy the WAR without restarting the VM, you end up with 2 application contexts in the * same VM: the one attached to the static field of ApplicationContextHolder and the new one that is stored in the * ServletContext. This is just the same issue as the commons-logging memory issue. * 2. Tests: if you use spring tests, you will have multiple application contexts in the same VM when running a suite, * but only the one loaded from the first test is stored in the static field. * 3. Application context hierarchy: It is quite common to have a "services application context" and a "web application * context" (and a DispatcherServlet application context), each one being a child of the previous one. Only the root * (services) application context will be stored in the static variable, and thus you have a lot of beans that are not * accessible. * * Though, it's safe to use this in a java -jar application. */ @Component public class ApplicationContextHolder implements ApplicationContextAware { private static ApplicationContext context; /** * Returns the Spring managed bean instance of the given class type if it exists. * Returns null otherwise. */ public static <T> T getBean(Class<T> beanClass) { return context.getBean(beanClass); } @SuppressWarnings("unchecked") public static <T> T getBean(String name) { return (T) context.getBean(name); } @Override public void setApplicationContext(ApplicationContext context) throws BeansException { // store ApplicationContext reference to access required beans later on synchronized (this) { if (ApplicationContextHolder.context == null) { ApplicationContextHolder.context = context; } } } }
然后, 就可以在RedisCache.java中, 静态引用SysConfig了, 将其中初始化那一步修改为
public MyBatisCache(final String id) { if (id == null) { throw new IllegalArgumentException("Cache instances require an ID"); } this.id = id; redisConfig = new MyBatisCacheConfig(); SysConfig sysConfig = ApplicationContextHolder.getBean(SysConfig.class); redisConfig.setHost(sysConfig.getRedisMybatis().getHost()); redisConfig.setPort(sysConfig.getRedisMybatis().getPort()); redisConfig.setPassword(sysConfig.getRedisMybatis().getPassword()); redisConfig.setDatabase(sysConfig.getRedisMybatis().getDatabase()); ...
这样就可以在mapper初始化的时候拿到已经赋值的配置信息, 完成mapper对应的RedisCache实例的初始化.
MyBatis的缓存过期机制, flushInterval参数
在实际测试中, 发现Redis中的缓存数据TTL为-1, 在Hash中的key也无过期时间信息, 怀疑RedisCache的实现是否能正常处理缓存过期, 因此一路追查到了MyBatis的代码.
MyBatis在每个Mapper中, 可以设置参数 flushInterval 用来控制缓存的过期时间, 这个参数, 在 MapperBuilderAssistant 中, 被设置为Cache的clearInternal
public Cache useNewCache(Class<? extends Cache> typeClass, Class<? extends Cache> evictionClass, Long flushInterval, Integer size, boolean readWrite, boolean blocking, Properties props) { Cache cache = new CacheBuilder(currentNamespace) .implementation(valueOrDefault(typeClass, PerpetualCache.class)) .addDecorator(valueOrDefault(evictionClass, LruCache.class)) .clearInterval(flushInterval) .size(size) .readWrite(readWrite) .blocking(blocking) .properties(props) .build(); configuration.addCache(cache); currentCache = cache; return cache; }
而后在CacheBuilder中, 会根据这个参数, 判断是否生成代理类ScheduledCache
private Cache setStandardDecorators(Cache cache) { try { MetaObject metaCache = SystemMetaObject.forObject(cache); if (size != null && metaCache.hasSetter("size")) { metaCache.setValue("size", size); } if (clearInterval != null) { cache = new ScheduledCache(cache); ((ScheduledCache) cache).setClearInterval(clearInterval); } if (readWrite) { cache = new SerializedCache(cache); } cache = new LoggingCache(cache); cache = new SynchronizedCache(cache); if (blocking) { cache = new BlockingCache(cache); } return cache; } catch (Exception e) { throw new CacheException("Error building standard cache decorators. Cause: " + e, e); } }
ScheduledCache内部存储了一个变量lastClear, 用来记录最后一次清空缓存的时间, 在get, put, remove等各个操作前, 会判断是否需要清空, 注意是整个namespace的缓存清空.
private boolean clearWhenStale() { if (System.currentTimeMillis() - lastClear > clearInterval) { clear(); return true; } return false; } @Override public void putObject(Object key, Object object) { clearWhenStale(); delegate.putObject(key, object); } @Override public Object getObject(Object key) { return clearWhenStale() ? null : delegate.getObject(key); }
由此可以看出, MyBatis的缓存过期管理机制还是比较粗糙的, 并且依赖本地的变量, 同样的LRU机制也是依赖本地.
在分布式系统中使用MyBatis时如果开启缓存, 需要注意这个问题,
1. 各个节点对于缓存的清空时间分别计划, 实际上是叠加的, 如果设置的缓存时间为10分钟, 运行着三个节点, 并且节点都不断有查询请求, 那么在10分钟之间至少会被清空三次.
2. 缓存的过期, 是整体进行的, 无论期间产生的数据从何时开始, 在何时被访问, 有可能一个缓存刚刚创建就被清空了.
建议的解决方案
1. 关闭 MyBatis 的 flushInterval , 这样就不存在缓存频繁清空的问题, 使用全局的时间任务来触发缓存清空操作
2. 将decorators下的机制, 也改为使用集中的存储
3. 对namespace下的缓存数据, 是否可以在值中增加过期时间, 将过期时间粒度细化到单个结果.