zoukankan      html  css  js  c++  java
  • 在大词典中查找一组与给定字符串最相似的词

    标准的说法是在词典中取出与给定字符串编辑距离最短的词.
    首先是编辑距离Levenshtein distance的计算, 通过建立两个字符串的矩阵得到, 优化算法是Wagner–Fischer algorithm, 通过DP可以将计算量降低到O(n2)因为计算编辑距离需要耗费相当的时间, 所以这个问题的优化方向就是每次查询尽量减少这种计算的次数. 优化的方法是bk tree.

     除了字符串匹配、查找回文串、查找重复子串等经典问题以外,日常生活中我们还会遇到其它一些怪异的字符串问题。比如,有时我们需要知道给定的两个字符串“有多像”,换句话说两个字符串的相似度是多少。1965年,俄国科学家Vladimir Levenshtein给字符串相似度做出了一个明确的定义叫做Levenshtein距离,我们通常叫它“编辑距离”。字符串A到B的编辑距离是指,只用插入、删除和替换三种操作,最少需要多少步可以把A变成B。例如,从FAME到GATE需要两步(两次替换),从GAME到ACM则需要三步(删除G和E再添加C)。Levenshtein给出了编辑距离的一般求法,就是大家都非常熟悉的经典动态规划问题。
        在自然语言处理中,这个概念非常重要,例如我们可以根据这个定义开发出一套半自动的校对系统:查找出一篇文章里所有不在字典里的单词,然后对于每个单词,列出字典里与它的Levenshtein距离小于某个数n的单词,让用户选择正确的那一个。n通常取到2或者3,或者更好地,取该单词长度的1/4等等。这个想法倒不错,但算法的效率成了新的难题:查字典好办,建一个Trie树即可;但怎样才能快速在字典里找出最相近的单词呢?这个问题难就难在,Levenshtein的定义可以是单词任意位置上的操作,似乎不遍历字典是不可能完成的。现在很多软件都有拼写检查的功能,提出更正建议的速度是很快的。它们到底是怎么做的呢?1973年,Burkhard和Keller提出的BK树有效地解决了这个问题。这个数据结构强就强在,它初步解决了一个看似不可能的问题,而其原理非常简单。

        首先,我们观察Levenshtein距离的性质。令d(x,y)表示字符串x到y的Levenshtein距离,那么显然:

    1. d(x,y) = 0 当且仅当 x=y  (Levenshtein距离为0 <==> 字符串相等)
    2. d(x,y) = d(y,x)     (从x变到y的最少步数就是从y变到x的最少步数)
    3. d(x,y) + d(y,z) >= d(x,z)  (从x变到z所需的步数不会超过x先变成y再变成z的步数)

        最后这一个性质叫做三角形不等式。就好像一个三角形一样,两边之和必然大于第三边。给某个集合内的元素定义一个二元的“距离函数”,如果这个距离函数同时满足上面说的三个性质,我们就称它为“度量空间”。我们的三维空间就是一个典型的度量空间,它的距离函数就是点对的直线距离。度量空间还有很多,比如Manhattan距离,图论中的最短路,当然还有这里提到的Levenshtein距离。就好像并查集对所有等价关系都适用一样,BK树可以用于任何一个度量空间。

        建树的过程有些类似于Trie。首先我们随便找一个单词作为根(比如GAME)。以后插入一个单词时首先计算单词与根的Levenshtein距离:如果这个距离值是该节点处头一次出现,建立一个新的儿子节点;否则沿着对应的边递归下去。例如,我们插入单词FAME,它与GAME的距离为1,于是新建一个儿子,连一条标号为1的边;下一次插入GAIN,算得它与GAME的距离为2,于是放在编号为2的边下。再下次我们插入GATE,它与GAME距离为1,于是沿着那条编号为1的边下去,递归地插入到FAME所在子树;GATE与FAME的距离为2,于是把GATE放在FAME节点下,边的编号为2。
          
        查询操作异常方便。如果我们需要返回与错误单词距离不超过n的单词,这个错误单词与树根所对应的单词距离为d,那么接下来我们只需要递归地考虑编号在d-n到d+n范围内的边所连接的子树。由于n通常很小,因此每次与某个节点进行比较时都可以排除很多子树。
        举个例子,假如我们输入一个GAIE,程序发现它不在字典中。现在,我们想返回字典中所有与GAIE距离为1的单词。我们首先将GAIE与树根进行比较,得到的距离d=1。由于Levenshtein距离满足三角形不等式,因此现在所有离GAME距离超过2的单词全部可以排除了。比如,以AIM为根的子树到GAME的距离都是3,而GAME和GAIE之间的距离是1,那么AIM及其子树到GAIE的距离至少都是2。于是,现在程序只需要沿着标号范围在1-1到1+1里的边继续走下去。我们继续计算GAIE和FAME的距离,发现它为2,于是继续沿标号在1和3之间的边前进。遍历结束后回到GAME的第二个节点,发现GAIE和GAIN距离为1,输出GAIN并继续沿编号为1或2的边递归下去(那条编号为4的边连接的子树又被排除掉了)……
        实践表明,一次查询所遍历的节点不会超过所有节点的5%到8%,两次查询则一般不会17-25%,效率远远超过暴力枚举。适当进行缓存,减小Levenshtein距离常数n可以使算法效率更高。

  • 相关阅读:
    linux驱动开发学习一:创建一个字符设备
    如何高效的对有序数组去重
    找到缺失的第一个正整数
    .NET不可变集合已经正式发布
    中国人唯一不认可的成功——就是家庭的和睦,人生的平淡【转】
    自己动手搭建 MongoDB 环境,并建立一个 .NET HelloWorld 程序测试
    ASP.NET MVC 中如何用自定义 Handler 来处理来自 AJAX 请求的 HttpRequestValidationException 错误
    自己动手搭建 Redis 环境,并建立一个 .NET HelloWorld 程序测试
    ServiceStack 介绍
    一步一步实战扩展 ASP.NET Route,实现小写 URL、个性化 URL
  • 原文地址:https://www.cnblogs.com/milton/p/4246950.html
Copyright © 2011-2022 走看看