zoukankan      html  css  js  c++  java
  • 常见概率分布及python实现

    总结

    1.两点分布——离散型概率分布

    概念:一次试验,若成功随机变量取值为1,成功概率为p; 若失败随机变量取0,失败概率为1-p
    期望(E(X)=1*p+0*(1-p)=p)
    方差

    [egin{aligned} D(X)&=p*(1-p)^2+(1-p)*(0-p)^2\ &=p(1-p) end{aligned} ]

    2.二项分布——离散型概率分布

    概念:进行n次伯努利试验。(n>=1),当n=1,二项分布就是伯努利分布
    n次试验中总共成功的次数为k的概率 (P(X=k;n,p)=C_n^k*p^k*(1-p)^{n-k})
    期望 $ E(X)=np $
    期望的推导

    [egin{aligned} E(X) &= sum_{k=0}^{n}k*P(X=k)\ &=sum_{k=0}^{n}k*frac{n!}{k!(n-k)!}p^k (1-p)^{n-k}\ &=npsum_{k=1}^{n}frac{(n-1)!}{(k-1)!(n-k)!}p^{k-1} (1-p)^{(n-k)}\ &=np end{aligned} ]

    方差$ D(X)=np(1-p) $
    方差的推导

    [egin{aligned} D(X) &= E(X^2)-E^2(X)\ &=E[X(X-1)+X]-n^2p^2=E[X(X-1)]+np-n^2p^2 end{aligned} ]

    [egin{aligned} E[X(X-1)] &= sum_{k=0}^{n}k(k-1)*P(X=k)\ &= sum_{k=0}^{n}k(k-1)*frac{n!}{k!(n-k)!}p^k(1-p)^{n-k}\ &=n(n-1)p^2sum_{k=2}^{n}frac{(n-2)!}{(k-2)!(n-k)!}p^{k-2}(1-p)^{n-k}\ &=n(n-1)p^2 end{aligned} ]

    [egin{aligned} D(X)&=n(n-1)p^2+np-n^2p^2\ &=np(1-p) end{aligned} ]

    3.泊松分布——离散型概率分布

    泰勒展开式

    [egin{aligned} e^x&=1+x+frac{x^2}{2!}+frac{x^3}{3!}+cdots+ frac{x^n}{n!}+R_n\ 1&=e^{-x}+xe^{-x}+frac{x^2}{2!}e^{-x}+frac{x^3}{3!}e^{-x}+cdots+frac{x^n}{n!}e^{-x}+R_ne^{-n} end{aligned} ]

    通项 $ frac{xk}{k!}e{-x} $ ---> (frac{lambda^k}{k!}e^{-lambda})
    概率分布(P(X=k)=frac{lambda^k}{k!}e^{-lambda},lambda>0,k=0,1,2,cdots)
    期望

    [egin{aligned} E(X)&=sum_{k=0}^{infty}k*f(x)\ &=sum_{k=0}^{infty}k*frac{lambda^k}{k!}e^{-lambda}\ &=lambdasum_{k=1}^{infty}frac{lambda^{k-1}}{(k-1)!}e^{-lambda}\ &=lambda end{aligned} ]

    方差

    [egin{aligned} D(X) &= E(X^2)-E^2(X)\ &=E[X(X-1)+X]-E^2(X)\ &=E[X(X-1)]+E(X)-E^2(X)\ &=E[X(X-1)+lambda-lambda^2 end{aligned} ]

    [egin{aligned} E[X(X-1)&=sum_{k=0}^{infty}k(k-1)*frac{lambda^k}{k!}e^{-lambda}\ &=lambda^2sum_{k=2}^{infty}frac{lambda^{k-2}}{(k-2)!}e^{-lambda}\ &=lambda^2 end{aligned} ]

    [egin{aligned} D(X)&=E[X(X-1)]+E(X)-E^2(X)=lambda^2+lambda-lambda^2=lambda end{aligned} ]

    泊松分布的期望和方差都是参数(lambda)!

    import numpy as np
    a = np.random.poisson(55,size=(4,))
    print(a)
    print(type(a))
    >>> [46 50 39 57]
    <class 'numpy.ndarray'>
    

    4.均匀分布——连续型概率分布

    概率密度函数为

    [f(x)=left{ egin{aligned} &frac{1}{b-a},&a<x<b\ &0,&others end{aligned} ight. ]

    期望(E(X)=int_{-infty}^{infty}x*f(x)dx=frac{a+b}{2})
    方差(D(X)=E(X^2)-E^2(X)=int_{a}^{b}x^2*frac{1}{b-a}dx-frac{(a+b)^2}{4}=frac{(b-a)^2}{12})

    #np.random.uniform(low=0.0, high=1.0, size=None)
    
    a = np.random.uniform(20,50,size=(2,6))
    print(a)
    print(type(a))
    >>> [[ 45.20217569  43.75312926  26.52703807  41.91200572  42.85374841
       29.24479553]
     [ 45.12516381  30.12544796  35.53555014  32.28527649  21.76682194
       46.33104556]]
    <class 'numpy.ndarray'>
    

    5.指数分布——连续型概率分布

    概率密度函数为

    [f(x)=left{ egin{aligned} &frac{1}{ heta}e^{-frac{x}{ heta}},&x>0,\ &0,&xleq0 end{aligned} ight. ]

    其中( heta>0)
    期望

    [egin{aligned} E(X)&=int_0^{+infty}x*f(x)dx\ &=int_0^{infty}xfrac{1}{ heta}e^{-frac{x}{ heta}}dx\ &=-int_0^{infty}xd(e^{-frac{x}{ heta}})\ &=-[xe^{-frac{x}{ heta}}|_0^{infty}-int_0^{infty}e^{-frac{x}{ heta}}dx]\ &= heta end{aligned} ]

    方差

    [egin{aligned} D(X)&=E(X^2)-E^2(X)\ &=int_0^{+infty}x^2frac{1}{ heta}e^{-frac{x}{ heta}}- heta^2\ &=2 heta^2- heta^2\ &= heta^2 end{aligned} ]

    6.正态分布/高斯分布

    设随机变量X服从正态分布,即X~(N(mu,sigma^2))
    概率密度函数为

    [f(x)=frac{1}{sqrt{2pi}sigma}e^{-frac{(x-mu)^2}{2sigma^2}} ]

    期望(E(X)=mu)
    方差(D(X)=sigma^2)

    a = np.random.normal(40,3,size=(5,2))
    print(a)
    print(type(a))
    >>>[[ 42.75053239  36.92362467]
     [ 42.90588338  38.58249427]
     [ 42.91278062  39.05507689]
     [ 39.69794259  40.26237062]
     [ 38.90643225  42.94278753]]
    <class 'numpy.ndarray'>
    
  • 相关阅读:
    Delete Them
    Toda 2
    JQuery案例:购物车加减
    JQuery案例:折叠菜单
    JQuery案例:暖心小广告
    JQuery案例:左右选
    JQuery动画
    JQuery切换事件
    JQuery文档操作
    JQuery选择器
  • 原文地址:https://www.cnblogs.com/min2day/p/8013660.html
Copyright © 2011-2022 走看看