ServiceManager是安卓中一个重要的类,用于管理所有的系统服务,维护着系统服务和客户端的binder通信。
对此陌生的可以先看系统服务与ServiceManager来了解应用层是如何使用ServiceManager的。
我们可以通过 ServiceManager.getService(String name)来获取服务,返回的是一个Binder对象,用于与系统做远程通信
public static IBinder getService(String name) { try { IBinder service = sCache.get(name); if (service != null) { return service; } else { return getIServiceManager().getService(name); } } catch (RemoteException e) { Log.e(TAG, "error in getService", e); } return null; }
这里的sCache是一个Map,如果cache中有这个Binder对象就直接返回了,如果没有就调用getIServiceManager().getService(name)来获取
private static IServiceManager getIServiceManager() { if (sServiceManager != null) { return sServiceManager; } // Find the service manager sServiceManager = ServiceManagerNative.asInterface(BinderInternal.getContextObject()); return sServiceManager; }
可以看到这里返回了一个IServiceManager,它也是一个Binder对象,最终获取服务用的就是这个Binder对象。
并且是通过BinderInternal.getContextObject()来拿到Binder对象的。
/** * Return the global "context object" of the system. This is usually * an implementation of IServiceManager, which you can use to find * other services. */ public static final native IBinder getContextObject();
它实现在frameworks/base/core/jni/android_util_Binder.cpp文件中:
static jobject android_os_BinderInternal_getContextObject(JNIEnv* env, jobject clazz) { sp b = ProcessState::self()->getContextObject(NULL); return javaObjectForIBinder(env, b); }
这里应该不难理解,先获取一个native层的IBinder,再将该对象转换成Java Object返回给调用者,在Java层拿到的应该是一个ServiceManagerProxy对象。
先看第一部获取native层的IBinder对象:
sp b = ProcessState::self()->getContextObject(NULL);
在ProcessState的构造函数中,会通过open文件操作函数打开设备文件/dev/binder,并且返回来的设备文件描述符保存在成员变量mDriverFD中,供后续在IPCThreadState中使用
需要注意的是这里传了一个NULL,也就是0,下面会提到它的作用:
[ProcessState.cpp]
sp ProcessState::getContextObject(const sp& /*caller*/) { return getStrongProxyForHandle(0); } sp ProcessState::getStrongProxyForHandle(int32_t handle) { sp result; AutoMutex _l(mLock); handle_entry* e = lookupHandleLocked(handle); if (e != NULL) { IBinder* b = e->binder; if (b == NULL || !e->refs->attemptIncWeak(this)) { if (handle == 0) { Parcel data; status_t status = IPCThreadState::self()->transact( 0, IBinder::PING_TRANSACTION, data, NULL, 0); if (status == DEAD_OBJECT) return NULL; } b = new BpBinder(handle); e->binder = b; if (b) e->refs = b->getWeakRefs(); result = b; } else { // This little bit of nastyness is to allow us to add a primary // reference to the remote proxy when this team doesn't have one // but another team is sending the handle to us. result.force_set(b); e->refs->decWeak(this); } } return result; }
可以看到,最终返回的对象是:b = new BpBinder(handle); 并将handler传了进去
这里的handler即是之前传进来的0,代表一个句柄,这个句柄是有特殊意义的。
我们知道在Java层有两类Binder,一个是Binder对象用于服务端建立的对象,一个是BinderProxy是客户端取到的Binder对象。
native层也有两类Binder,一个是BpBinder,一个是BBinder:
BpBinder是客户端用来与Server交互的代理类,p即Proxy的意思,
BBinder则是proxy交互的目的端,
并且他们是一一对应的。
继续回到代码,创建了一个BpBinder对象,传进去的hande为0,那么他是怎么找到对应的BBinder的呢?
事实上,handle代表了通信的目的端,这个0代表的就是ServiceManager所对应的BBinder。
继续往下看,通过上面获取的对象创建一个Java层的Binder对象并返回:
[android_util_Binder.cpp]
return javaObjectForIBinder(env, b)
继续看创建Java层对象的过程:
[android_util_Binder.cpp]
jobject javaObjectForIBinder(JNIEnv* env, const sp& val) { if (val == NULL) return NULL; if (val->checkSubclass(&gBinderOffsets)) { // One of our own! jobject object = static_cast<JavaBBinder*>(val.get())->object(); LOGDEATH("objectForBinder {936b63963a8c9f2b24063da536a495a32039ff9ed9d82cacc18dd4741407c351}p: it's our own {936b63963a8c9f2b24063da536a495a32039ff9ed9d82cacc18dd4741407c351}p! ", val.get(), object); return object; } // For the rest of the function we will hold this lock, to serialize // looking/creation/destruction of Java proxies for native Binder proxies. AutoMutex _l(mProxyLock); // Someone else's... do we know about it? jobject object = (jobject)val->findObject(&gBinderProxyOffsets); if (object != NULL) { jobject res = jniGetReferent(env, object); if (res != NULL) { ALOGV("objectForBinder {936b63963a8c9f2b24063da536a495a32039ff9ed9d82cacc18dd4741407c351}p: found existing {936b63963a8c9f2b24063da536a495a32039ff9ed9d82cacc18dd4741407c351}p! ", val.get(), res); return res; } LOGDEATH("Proxy object {936b63963a8c9f2b24063da536a495a32039ff9ed9d82cacc18dd4741407c351}p of IBinder {936b63963a8c9f2b24063da536a495a32039ff9ed9d82cacc18dd4741407c351}p no longer in working set!!!", object, val.get()); android_atomic_dec(&gNumProxyRefs); val->detachObject(&gBinderProxyOffsets); env->DeleteGlobalRef(object); } object = env->NewObject(gBinderProxyOffsets.mClass, gBinderProxyOffsets.mConstructor); if (object != NULL) { LOGDEATH("objectForBinder {936b63963a8c9f2b24063da536a495a32039ff9ed9d82cacc18dd4741407c351}p: created new proxy {936b63963a8c9f2b24063da536a495a32039ff9ed9d82cacc18dd4741407c351}p ! ", val.get(), object); // The proxy holds a reference to the native object. env->SetLongField(object, gBinderProxyOffsets.mObject, (jlong)val.get()); val->incStrong((void*)javaObjectForIBinder); // The native object needs to hold a weak reference back to the // proxy, so we can retrieve the same proxy if it is still active. jobject refObject = env->NewGlobalRef( env->GetObjectField(object, gBinderProxyOffsets.mSelf)); val->attachObject(&gBinderProxyOffsets, refObject, jnienv_to_javavm(env), proxy_cleanup); // Also remember the death recipients registered on this proxy sp drl = new DeathRecipientList; drl->incStrong((void*)javaObjectForIBinder); env->SetLongField(object, gBinderProxyOffsets.mOrgue, reinterpret_cast(drl.get())); // Note that a new object reference has been created. android_atomic_inc(&gNumProxyRefs); incRefsCreated(env); } return object; }
可以看到有两处返回语句,跳过第一处取缓存对象,直接往下看:
object = env->NewObject(gBinderProxyOffsets.mClass, gBinderProxyOffsets.mConstructor);
这里创建了一个BinderProxy对象,这时候这个对象与Native层用于通信的BpBinder没有任何关系,继续往下看:
env->SetLongField(object, gBinderProxyOffsets.mObject, (jlong)val.get());
这里是把BpBinder对象的地址赋值给了BinderProxy对象的mObject字段,通过这种手段将Java层的对象与Native层的对象关联在了一起。
然后我们操作Java层BinderProxy对象的native方法的时候,就能定位到对应的BpBinder对象了。
并且把这个Java层的对象放到了BpBinder对象中,之后就不用再次创建了:
jobject refObject = env->NewGlobalRef( env->GetObjectField(object, gBinderProxyOffsets.mSelf)); val->attachObject(&gBinderProxyOffsets, refObject, jnienv_to_javavm(env), proxy_cleanup);
回到Java层代码,我们通过下面代码来获取一个可以调用的ServiceManager对象:
sServiceManager = ServiceManagerNative.asInterface(BinderInternal.getContextObject());
看过Android IPC 机制的应该知道,这里返回的是一个ServiceManagerProxy对象,里面持有一个名为面Remote的IBiner对象,从上面可以看到这个mRemote就是之前拿到的BinderProxy,真正进行进程间通信的时候会调用BinderProxy的transact方法,然后在它的内部调用transactNative方法。
再次来到native层,调用如下方法:
[android_util_Binder.cpp]
static jboolean android_os_BinderProxy_transact(JNIEnv* env, jobject obj, jint code, jobject dataObj, jobject replyObj, jint flags) // throws RemoteException { //... IBinder* target = (IBinder*) env->GetLongField(obj, gBinderProxyOffsets.mObject); if (target == NULL) { jniThrowException(env, "java/lang/IllegalStateException", "Binder has been finalized!"); return JNI_FALSE; } bool time_binder_calls; int64_t start_millis; if (kEnableBinderSample) { time_binder_calls = should_time_binder_calls(); if (time_binder_calls) { start_millis = uptimeMillis(); } } status_t err = target->transact(code, *data, reply, flags); if (kEnableBinderSample) { if (time_binder_calls) { conditionally_log_binder_call(start_millis, target, code); } } if (err == NO_ERROR) { return JNI_TRUE; } else if (err == UNKNOWN_TRANSACTION) { return JNI_FALSE; } signalExceptionForError(env, obj, err, true /*canThrowRemoteException*/, data->dataSize()); return JNI_FALSE; }
为什么是这个方法呢?这里在简单的书一下jni,有静态注册和动态注册两种方法,这里用的是动态注册,会用到如下定义:
static const JNINativeMethod gBinderProxyMethods[] = { /* name, signature, funcPtr */ {"pingBinder", "()Z", (void*)android_os_BinderProxy_pingBinder}, {"isBinderAlive", "()Z", (void*)android_os_BinderProxy_isBinderAlive}, {"getInterfaceDescriptor", "()Ljava/lang/String;", (void*)android_os_BinderProxy_getInterfaceDescriptor}, {"transactNative", "(ILandroid/os/Parcel;Landroid/os/Parcel;I)Z", (void*)android_os_BinderProxy_transact}, {"linkToDeath", "(Landroid/os/IBinder$DeathRecipient;I)V", (void*)android_os_BinderProxy_linkToDeath}, {"unlinkToDeath", "(Landroid/os/IBinder$DeathRecipient;I)Z", (void*)android_os_BinderProxy_unlinkToDeath}, {"destroy", "()V", (void*)android_os_BinderProxy_destroy}, };
包括Java层方法名,方法签名,调用的函数指针。
这里不过多展开了,继续:
IBinder* target = (IBinder*)env->GetLongField(obj, gBinderProxyOffsets.mObject);
可以看到这里用到了之前保存在BinderProxy中的的mObject字段,拿到了原始的BpBinder对象。
然后调用BpBinder对象的transact方法:
status_t err = target->transact(code, *data, reply, flags);
下面看BpBinder的transact方法:
[BpBinder.cpp]
tatus_t BpBinder::transact( uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags) { // Once a binder has died, it will never come back to life. if (mAlive) { status_t status = IPCThreadState::self()->transact( mHandle, code, data, reply, flags); if (status == DEAD_OBJECT) mAlive = 0; return status; } return DEAD_OBJECT; }
BpBinder只是一个转发工具,最终由IPCThreadState执行:
status_t status = IPCThreadState::self()->transact(mHandle, code, data, reply, flags);
并且带上了代表BBinder对象的mHandle。
[IPCThreadState.cpp]
status_t IPCThreadState::transact(int32_t handle,uint32_t code, const Parcel& data,Parcel* reply, uint32_t flags) { status_t err = data.errorCheck(); flags |= TF_ACCEPT_FDS; if (err == NO_ERROR) { LOG_ONEWAY(">>>> SEND from pid {936b63963a8c9f2b24063da536a495a32039ff9ed9d82cacc18dd4741407c351}d uid {936b63963a8c9f2b24063da536a495a32039ff9ed9d82cacc18dd4741407c351}d {936b63963a8c9f2b24063da536a495a32039ff9ed9d82cacc18dd4741407c351}s", getpid(), getuid(), (flags & TF_ONE_WAY) == 0 ? "READ REPLY" : "ONE WAY"); err = writeTransactionData(BC_TRANSACTION, flags, handle, code, data, NULL); } if (err != NO_ERROR) { if (reply) reply->setError(err); return (mLastError = err); } if ((flags & TF_ONE_WAY) == 0) { #if 0 if (code == 4) { // relayout ALOGI(">>>>>> CALLING transaction 4"); } else { ALOGI(">>>>>> CALLING transaction {936b63963a8c9f2b24063da536a495a32039ff9ed9d82cacc18dd4741407c351}d", code); } #endif if (reply) { err = waitForResponse(reply); } else { Parcel fakeReply; err = waitForResponse(&fakeReply); } #if 0 if (code == 4) { // relayout ALOGI("<<<<<< RETURNING transaction 4"); } else { ALOGI("<<<<<< RETURNING transaction {936b63963a8c9f2b24063da536a495a32039ff9ed9d82cacc18dd4741407c351}d", code); } #endif IF_LOG_TRANSACTIONS() { TextOutput::Bundle _b(alog); alog << "BR_REPLY thr " << (void*)pthread_self() << " / hand " << handle << ": "; if (reply) alog << indent << *reply << dedent << endl; else alog << "(none requested)" << endl; } } else { err = waitForResponse(NULL, NULL); } return err; }
有两个方法调用需要关注:
err = writeTransactionData(BC_TRANSACTION, flags, handle, code, data, NULL);
err = waitForResponse(NULL, NULL);
一个是写数据,一个是等待相应。在此之前假设我们知道:
每个线程都有一个IPCThreadState,每个IPCThreadState中都有一个mIn、一个mOut,其中mIn是用来接收来自Binder设备的数据的,而mOut则是用来存储发往Binder设备的数据的。
先看写数据:
status_t IPCThreadState::writeTransactionData(int32_t cmd, uint32_t binderFlags, int32_t handle, uint32_t code, const Parcel& data, status_t* statusBuffer) { binder_transaction_data tr; tr.target.ptr = 0; /* Don't pass uninitialized stack data to a remote process */ tr.target.handle = handle; tr.code = code; tr.flags = binderFlags; tr.cookie = 0; tr.sender_pid = 0; tr.sender_euid = 0; const status_t err = data.errorCheck(); if (err == NO_ERROR) { tr.data_size = data.ipcDataSize(); tr.data.ptr.buffer = data.ipcData(); tr.offsets_size = data.ipcObjectsCount()*sizeof(binder_size_t); tr.data.ptr.offsets = data.ipcObjects(); } else if (statusBuffer) { tr.flags |= TF_STATUS_CODE; *statusBuffer = err; tr.data_size = sizeof(status_t); tr.data.ptr.buffer = reinterpret_cast(statusBuffer); tr.offsets_size = 0; tr.data.ptr.offsets = 0; } else { return (mLastError = err); } mOut.writeInt32(cmd); mOut.write(&tr, sizeof(tr)); return NO_ERROR; }
特别注意这里:tr.target.handle = handle;通信的目标值是handle,也就是之前传的0;最后写入到mOut中;
真正执行在waitForResponse方法中,这个方法是一个死循环,一直在读取mIn的数据,最后会根据code进行分发,调用executeCommand方法,
在executeCommand方法内部获取BBinder调用transact:
error = reinterpret_cast(tr.cookie)->transact(tr.code, buffer,&reply, tr.flags);
这里的mIn与mOut便是真正的进程间通信,可以查看IPCThreadState::talkWithDriver方法与Binder驱动通信,使用ioctl方式的方式读写/dev/binder虚拟设备。
关于Binder的深入分析,下次有机会再分享。
那么ServiceManager的服务是如何注册的呢?
在native层可以通过下面代码获取IServiceManager:
spsm = defaultServiceManager()
然后各个服务模块会通过IServiceManager的addService方法将各自的模块注册到系统这个唯一的ServiceManager中
[IServiceManager.cpp]
sp defaultServiceManager() { if (gDefaultServiceManager != NULL) return gDefaultServiceManager; { AutoMutex _l(gDefaultServiceManagerLock); while (gDefaultServiceManager == NULL) { gDefaultServiceManager = interface_cast( ProcessState::self()->getContextObject(NULL)); if (gDefaultServiceManager == NULL) sleep(1); } } return gDefaultServiceManager; }
可以看到这个是单例,通过下面代码初始化:
gDefaultServiceManager = interface_cast(ProcessState::self()->getContextObject(NULL));
PocessState::self()->getContextObject(NULL)这个之前分析过了获取的是ServiceManager的BpBinder对象,
然后转换成BpServiceManager对象供其他服务模块使用,这里用到了模板函数和宏定义最终返回的是 new BpServiceManager(ProcessState::self()->getContextObject(NULL))。