在程序运行的过程中,所有变量都是在内存中,比如定义一个dict
>>> d=dict(name='Box',age=20,score=11)
可以随时修改变量,比如把'name'改成'Bill',但是一旦程序结束,变量所占有的内存就会被操作系统全部收回。如果没有把修改后的'Bill'存储到磁盘上,下次重新运行程序,变量又被初始化为'Bob'
我们把变量从内存中变成可存储或传输的过程称之为序列化,在Python中叫pickling,在其他语言中也被称之为serialization,marshalling,flattening等等,都是一个意思。
序列化之后,就可以把序列化后的内容写入磁盘,或者通过网络传输到别的机器上。
反过来,把变量内容从序列化的对象重新读到内存里称之为反序列化,即unpickling。
Python提供了pickle
模块来实现序列化。
首先,我们尝试把一个对象序列化并写入文件:
>>> import pickle >>> d=dict(name='Box',age=20,score=11) >>> pickle.dumps(d) b'x80x03}qx00(Xx04x00x00x00nameqx01Xx03x00x00x00Boxqx02Xx03x00x00x00ageqx03Kx14Xx05x00x00x00scoreqx04Kx0bu.'
pickle.dumps()方法把任意对象序列化成一个bytes,然后就可以把这个bytes写入文件。或者用另一个方法pickle.dump()直接把对象序列化写入一个file-like Object:
>>> f=open('dump.txt','wb') >>> pickle.dump(d,f) >>> f.close()
看看写入的dump.txt
文件,一堆乱七八糟的内容,这些都是Python保存的对象内部信息。
当我们要把对象从磁盘读到内存时,可以先把内容读到一个bytes
,然后用pickle.loads()
方法反序列化出对象,也可以直接用pickle.load()
方法从一个file-like Object
中直接反序列化出对象。我们打开另一个Python命令行来反序列化刚才保存的对象:
>>> f=open('dump.txt','rb') >>> d=pickle.load(f) >>> f.close() >>> d {'name': 'Box', 'age': 20, 'score': 11}
变量的内容又回来了
这个变量和原来变量d是完全不相同的,只是内容相同而已。
Pickle的问题和所有其他编程语言特有的序列化问题一样,就是它只能用于Python,并且可能不同版本的Python彼此都不兼容,因此,只能用Pickle保存那些不重要的数据,不能成功地反序列化也没关系。
JSON
如果我们要在不同的编程语言之间传递对象,就必须把对象序列化为标准格式,比如XML,但更好的方法是序列化为JSON,因为JSON表示出来就是一个字符串,可以被所有语言读取,也可以方便地存储到磁盘或者通过网络传输。JSON不仅是标准格式,并且比XML更快,而且可以直接在Web页面中读取,非常方便。
JSON表示的对象就是标准的JavaScript语言的对象,JSON和Python内置的数据类型对应如下:
JSON类型 | Python类型 |
---|---|
{} | dict |
[] | list |
"string" | str |
1234.56 | int或float |
true/false | True/False |
null | None |
Python内置的json
模块提供了非常完善的Python对象到JSON格式的转换。我们先看看如何把Python对象变成一个JSON:
>>> import json >>> d=dict(name='Box',age=20,score=11) >>> json.dumps(d) '{"name": "Box", "age": 20, "score": 11}'
dumps()方法返回一个str,内容就是标准的JSON。类似的,dump()方法可以直接把JSON写入一个file-like Object
>>> f=open('dump.txt','w') >>> json.dump(d,f) >>> f.close()
PS:这里打开参数不能加b否则报错
dump.txt内容是明文{"name": "Box", "age": 20, "score": 11}
要把JSON反序列化为Python对象,用loads()或者对应的load()方法,前者把JSON的字符串反序列化,后者从file-like Object中读取字符串反序列化
>>> json_str='{"name": "Box", "age": 20, "score": 11}' >>> json.loads(json_str) {'name': 'Box', 'age': 20, 'score': 11}
>>> f=open('dump.txt','r') >>> d=json.load(f) >>> d {'name': 'Box', 'age': 20, 'score': 11} >>> f.close()
由于JSON标准规定JSON编码是UTF-8,所以我们总是能正确地在Python的str
与JSON的字符串之间转换。
JSON进阶
python的dict对象可以直接序列化为JSON的{},不过,很多时候,我们更喜欢用class表示对象,比如定义Student类,然后序列化
import json class Student(object): def __init__(self, name, age, score): self.name = name self.age = age self.score = score s=Student('Box',20,88) print(json.dumps(s))
报错
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/root/anaconda3/lib/python3.7/json/__init__.py", line 231, in dumps return _default_encoder.encode(obj) File "/root/anaconda3/lib/python3.7/json/encoder.py", line 199, in encode chunks = self.iterencode(o, _one_shot=True) File "/root/anaconda3/lib/python3.7/json/encoder.py", line 257, in iterencode return _iterencode(o, 0) File "/root/anaconda3/lib/python3.7/json/encoder.py", line 179, in default raise TypeError(f'Object of type {o.__class__.__name__} ' TypeError: Object of type Student is not JSON serializable
错误的原因是Student对象不是可以可序列化为JSON的对象
如果连class
的实例对象都无法序列化为JSON,这肯定不合理!
别急,我们仔细看看dumps()
方法的参数列表,可以发现,除了第一个必须的obj
参数外,dumps()
方法还提供了一大堆的可选参数:
https://docs.python.org/3/library/json.html#json.dumps
这些可选参数就是让我们来定制JSON序列化。前面的代码之所以无法把Student
类实例序列化为JSON,是因为默认情况下,dumps()
方法不知道如何将Student
实例变为一个JSON的{}
对象。
可选参数default
就是把任意一个对象变成一个可序列为JSON的对象,我们只需要为Student
专门写一个转换函数,再把函数传进去即可:
def student2dict(std) return { 'name':std.name, 'age':std.age, 'score':std.score }
这样,Student实例首先被student2dict()函数转换成dict,然后再被顺利序列化成JSON
>>> print(json.dumps(s,default=student2dict)) {"name": "Box", "age": 20, "score": 88}
PS:这里的(s,default=student2dict))相当于student2dict(s),把s作为参数传递给函数student2dict()
不过,下次如果遇到一个Teacher
类的实例,照样无法序列化为JSON。我们可以偷个懒,把任意class
的实例变为dict
:
>>> json.dumps(s,default=lambda obj:obj.__dict__) '{"name": "Box", "age": 20, "score": 88}'
因为通常class实例都有一个__dict__属性,它就是一个dict,用来存储实例变量。也有少数另外,比如定了了__slots__的class
同样的道理,如果我们要把JSON反序列化为一个Student
对象实例,loads()
方法首先转换出一个dict
对象,然后,我们传入的object_hook
函数负责把dict
转换为Student
实例:
def dict2student(d): return Student(d['name'],d['age'],d['score'])
运行结果如下
>>> json_str = '{"age": 20, "score": 88, "name": "Bob"}' >>> print(json.loads(json_str,object_hook=dict2student)) <__main__.Student object at 0x7f79c599d1d0>
练习
对中文进行JSON序列化时,json.dumps()提供了一个ensure_ascoo参数,观察该参数对结果的影响
>>> obj=dict(name='小明',age=18) >>> s=json.dumps(obj,ensure_ascii=True) >>> s '{"name": "\u5c0f\u660e", "age": 18}' >>> s=json.dumps(obj,ensure_ascii=False) >>> s '{"name": "小明", "age": 18}'
If ensure_ascii is True (the default), the output is guaranteed to have all incoming non-ASCII characters escaped. If ensure_ascii is False, these characters will be output as-is. 如果ensure_ascii为True(默认值),则输出保证将所有输入的非ASCII字符转义。如果确保ensure_ascii为False,这些字符将原样输出。
小结
python语言特定的序列化模块是pickle,但如果要把序列化搞的更通用,更符合Web标准,就可以使用json模块
json
模块的dumps()
和loads()
函数是定义得非常好的接口的典范。当我们使用时,只需要传入一个必须的参数。但是,当默认的序列化或反序列机制不满足我们的要求时,我们又可以传入更多的参数来定制序列化或反序列化的规则,既做到了接口简单易用,又做到了充分的扩展性和灵活性。