zoukankan      html  css  js  c++  java
  • tensorflow 从入门到摔掉肋骨 教程二

    构造你自己的第一个神经网络

    通过手势的图片识别图片比划的数字:
    1) 现在用1080张64*64的图片作为训练集
    2) 用120张图片作为测试集

     定义初始化值

    def load_dataset():
        train_dataset = h5py.File('datasets/train_signs.h5', "r")
        train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set features
        train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels
    
        test_dataset = h5py.File('datasets/test_signs.h5', "r")
        test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set features
        test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels
    
        classes = np.array(test_dataset["list_classes"][:]) # the list of classes
        
        train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))
        test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))
        
    return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes
    
    X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset()

    小测:

    import matplotlib.pyplot as plt
    index = 0
    plt.imshow(X_train_orig[index])
    print(Y_train_orig)
    print ("y = " + str(np.squeeze(Y_train_orig[:, index])))

    小测2:把矩阵降维为一维,并做分类映射

    # Flatten the training and test images
    X_train_flatten = X_train_orig.reshape(X_train_orig.shape[0], -1).T
    X_test_flatten = X_test_orig.reshape(X_test_orig.shape[0], -1).T
    # Normalize image vectors
    X_train = X_train_flatten/255.
    X_test = X_test_flatten/255.
    # Convert training and test labels to one hot matrices
    Y_train = convert_to_one_hot(Y_train_orig, 6)
    Y_test = convert_to_one_hot(Y_test_orig, 6)
    
    print ("number of training examples = " + str(X_train.shape[1]))
    print ("number of test examples = " + str(X_test.shape[1]))
    print ("X_train shape: " + str(X_train.shape))
    print ("Y_train shape: " + str(Y_train.shape))
    print ("X_test shape: " + str(X_test.shape))
    print ("Y_test shape: " + str(Y_test.shape))
    
    结果:number of training examples = 1080
    number of test examples = 120
    X_train shape: (12288, 1080)
    Y_train shape: (6, 1080)
    X_test shape: (12288, 120)
    Y_test shape: (6, 120)

    线性回归模型:LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SOFTMAX.
    Softmax 是判断哪个分类的概率最大

    3.1 创建容器 存放变量
    def create_placeholders(n_x,n_y):
        X = tf.placeholder(tf.float32, shape=[n_x, None])
        Y = tf.placeholder(tf.float32, shape=[n_y, None])
        return X,Y

     小测:

    X, Y = create_placeholders(12288, 6)
    print ("X = " + str(X))
    print ("Y = " + str(Y))
    3.2 初始化参数
    tensorflow里有get_variable初始化参数,通过Xavier进行设置变量的权重
    W1 = tf.get_variable("W1", [25,12288], initializer = tf.contrib.layers.xavier_initializer(seed = 1))
    b1 = tf.get_variable("b1", [25,1], initializer = tf.zeros_initializer())
    def initialize_parameters():
          tf.set_random_seed(1)                   # so that your "random" numbers match ours
            
        ### START CODE HERE ### (approx. 6 lines of code)
        W1 = tf.get_variable("W1", [25,12288], initializer = tf.contrib.layers.xavier_initializer(seed = 1))
        b1 = tf.get_variable("b1", [25,1], initializer = tf.zeros_initializer())
        W2 = tf.get_variable("W2", [12,25], initializer = tf.contrib.layers.xavier_initializer(seed = 1))
        b2 = tf.get_variable("b2", [12,1], initializer = tf.zeros_initializer())
        W3 = tf.get_variable("W3", [6,12], initializer = tf.contrib.layers.xavier_initializer(seed = 1))
        b3 = tf.get_variable("b3", [6,1], initializer = tf.zeros_initializer())
        ### END CODE HERE ###
    
        parameters = {"W1": W1,
                      "b1": b1,
                      "W2": W2,
                      "b2": b2,
                      "W3": W3,
                      "b3": b3}
        
    return parameters

    3.3 向前传播 训练集训练

    常用到的tensorflow函数:
    tf.add(…,..)
    tf.matmul(..,..) 矩阵阶乘
    tf.nn.relu(..) Relu激活函数

    def forward_propagation(X, parameters):
    # Retrieve the parameters from the dictionary "parameters" 
        print(X.shape)
        W1 = parameters['W1']
        b1 = parameters['b1']
        W2 = parameters['W2']
        b2 = parameters['b2']
        W3 = parameters['W3']
        b3 = parameters['b3']
        
        ### START CODE HERE ### (approx. 5 lines)              # Numpy Equivalents:
        Z1 = tf.add(tf.matmul(W1, X), b1)                                              # Z1 = np.dot(W1, X) + b1
        A1 = tf.nn.relu(Z1)                                                  # A1 = relu(Z1)
        Z2 = tf.add(tf.matmul(W2, A1), b2)                                          # Z2 = np.dot(W2, a1) + b2
        A2 = tf.nn.relu(Z2)                                                  # A2 = relu(Z2)
        Z3 = tf.add(tf.matmul(W3, A2), b3)                                           # Z3 = np.dot(W3,Z2) + b3
        ### END CODE HERE ###
        
        return Z3

    小测:

            tf.reset_default_graph()
            With tf.Session() as sess:
            X,Y = create_placeholders(12888,6)
            Parameters = initialize_parameters()
            Z3 = forward_propagation(X,parameters)
            Print(“Z3=”+str(Z3))

     3.4 计算损失函数(成本函数 Cost function)

    在tensorflow 函数里 有tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=…,labels=…)) 其中

    softmax_cross_entropy_with_logits是计算softmax函数

    def conpute_cost(Z3,Y)
       logits = tf.transpose(Z3)  ##向量的转置
       labels = tf.transpose(Y)  ##向量的转置
       
       cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits,labels=labels))
       return cost

    3.5 向后传播 求导 参数更新

       向后传播 主要是通过求导来进行梯度下降 然后优化参数模型

       其根本就是对损失函数求最小值

    优化函数:

       Optimizer = tf.train.GrandientDescentOptimizer(learning_rate = learning_rate).minimize(cost)

    执行函数:

       _,c=sess.run([optimizer,cost],feed_dict={X:minibatch_X,Y:minibatch_Y})

    3.6 一个完整的例子 (把上面的代码块汇总成功能)

    def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.0001,
              num_epochs = 1500, minibatch_size = 32, print_cost = True):
        """
        Implements a three-layer tensorflow neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SOFTMAX.
        
        Arguments:
        X_train -- training set, of shape (input size = 12288, number of training examples = 1080)
        Y_train -- test set, of shape (output size = 6, number of training examples = 1080)
        X_test -- training set, of shape (input size = 12288, number of training examples = 120)
        Y_test -- test set, of shape (output size = 6, number of test examples = 120)
        learning_rate -- learning rate of the optimization
        num_epochs -- number of epochs of the optimization loop
        minibatch_size -- size of a minibatch
        print_cost -- True to print the cost every 100 epochs
        
        Returns:
        parameters -- parameters learnt by the model. They can then be used to predict.
        """
        
        ops.reset_default_graph()                         # to be able to rerun the model without overwriting tf variables
        tf.set_random_seed(1)                             # to keep consistent results
        seed = 3                                          # to keep consistent results
        (n_x, m) = X_train.shape                          # (n_x: input size, m : number of examples in the train set)
        n_y = Y_train.shape[0]                            # n_y : output size
        costs = []                                        # To keep track of the cost
        
        # Create Placeholders of shape (n_x, n_y)
        ### START CODE HERE ### (1 line)
        X, Y = create_placeholders(n_x, n_y)
        ### END CODE HERE ###
    
        # Initialize parameters
        ### START CODE HERE ### (1 line)
        parameters = initialize_parameters()
        ### END CODE HERE ###
        
        # Forward propagation: Build the forward propagation in the tensorflow graph
        ### START CODE HERE ### (1 line)
        Z3 = forward_propagation(X, parameters)
        ### END CODE HERE ###
        
        # Cost function: Add cost function to tensorflow graph
        ### START CODE HERE ### (1 line)
        cost = compute_cost(Z3, Y)
        ### END CODE HERE ###
        
        # Backpropagation: Define the tensorflow optimizer. Use an AdamOptimizer.
        ### START CODE HERE ### (1 line)
        optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(cost)
        ### END CODE HERE ###
        
        # Initialize all the variables
        init = tf.global_variables_initializer()
    
        # Start the session to compute the tensorflow graph
        with tf.Session() as sess:
            
            # Run the initialization
            sess.run(init)
            
            # Do the training loop
            for epoch in range(num_epochs):
    
                epoch_cost = 0.                       # Defines a cost related to an epoch
                num_minibatches = int(m / minibatch_size) # number of minibatches of size minibatch_size in the train set
                seed = seed + 1
                minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed)
    
                for minibatch in minibatches:
    
                    # Select a minibatch
                    (minibatch_X, minibatch_Y) = minibatch
                    
                    # IMPORTANT: The line that runs the graph on a minibatch.
                    # Run the session to execute the "optimizer" and the "cost", the feedict should contain a minibatch for (X,Y).
                    ### START CODE HERE ### (1 line)
                    _ , minibatch_cost = sess.run([optimizer, cost], feed_dict={X: minibatch_X, Y: minibatch_Y})
                    ### END CODE HERE ###
                    
                    epoch_cost += minibatch_cost / num_minibatches
    
                # Print the cost every epoch
                if print_cost == True and epoch % 100 == 0:
                    print ("Cost after epoch %i: %f" % (epoch, epoch_cost))
                if print_cost == True and epoch % 5 == 0:
                    costs.append(epoch_cost)
                    
            # plot the cost
            plt.plot(np.squeeze(costs))
            plt.ylabel('cost')
            plt.xlabel('iterations (per tens)')
            plt.title("Learning rate =" + str(learning_rate))
            plt.show()
    
            # lets save the parameters in a variable
            parameters = sess.run(parameters)
            print ("Parameters have been trained!")
    
            # Calculate the correct predictions
            correct_prediction = tf.equal(tf.argmax(Z3), tf.argmax(Y))
    
            # Calculate accuracy on the test set
            accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    
            print ("Train Accuracy:", accuracy.eval({X: X_train, Y: Y_train}))
            print ("Test Accuracy:", accuracy.eval({X: X_test, Y: Y_test}))
            
            return parameters

    我们执行:

       parameters = model(X_train, Y_train, X_test, Y_test)

    得到结果:

    tensorflow的 函数库很多,这里是冰山一角,还有很多需要我们去学习。后面有时间,就把图像识别的卷积的tensorflow例子给搬出研究一下。

    我的大都内容来自吴恩达的公益视频和教案,特此鸣谢。

    参考:吴恩达网易课程

     
  • 相关阅读:
    根据服务端生成的WSDL文件创建客户端支持代码的三种方式
    2017第45周一java多线程创建方法
    java 分布式锁
    设计的背后
    Java中的锁概念
    maven变量
    清零成长法
    Java消息队列
    Java9的新特性
    2017第43周日
  • 原文地址:https://www.cnblogs.com/minsons/p/7866703.html
Copyright © 2011-2022 走看看