zoukankan      html  css  js  c++  java
  • PyTorch学习(2)

    PyTorch学习(2)

    PyTorch学习(2)

      1 Numpy与Torch的区别与联系

       1.1 numpy的array与Torch的tensor转换

       1.2 Torch中的variable

      2 激励函数(Activation Function)

      3 Regression回归(关系拟合回归)

      4 Classification(分类)

      5 Torch网络

       5.1 快速搭建torch网络

       5.2 保存和提取网络与参数

       5.3 批处理

       5.3 优化器optimizer加速神经网络

      6 神经网络分类

    这里是根据莫凡pytorch学习的,与pytorch学习(1)可能有所重叠,但是大部分不太一样,可以结合着一起看。

    1 Numpy与Torch的区别与联系

    1.1 numpy的array与Torch的tensor转换

    1)数据类型转换

    注:torch只处理二维数据

    import torch
    import numpy as np

    np_data = np.arange(6).reshape((2, 3))
    torch_data = torch.from_numpy(np_data)
    tensor2array = torch_data.numpy()

    print(' np_data', np_data,
         ' torch_data', torch_data,
         ' tensor2array', tensor2array, )

    #结果显示
    np_data [[0 1 2]
    [3 4 5]]
    torch_data tensor([[0, 1, 2],
          [3, 4, 5]], dtype=torch.int32)
    tensor2array [[0 1 2]
    [3 4 5]]

    2)矩阵乘法

    data = [[1, 2], [2, 3]]
    tensor = torch.FloatTensor(data)
    print(' numpy', np.matmul(data, data),
         ' torch', torch.matmul(tensor, tensor))

    #结果显示
    numpy [[ 5  8]
    [ 8 13]]
    torch tensor([[ 5.,  8.],
          [ 8., 13.]])
    注意的是torch中默认的tensor是float形式的

    1.2 Torch中的variable

    import torch
    from torch.autograd import Variable

    tensor = torch.FloatTensor([[1, 2], [3, 4]])
    variable = Variable(tensor, requires_grad=True)

    t_out = torch.mean(tensor*tensor)
    v_out = torch.mean(variable*variable)
    print('tensor', tensor)
    print('variable', variable)
    print('t_out', t_out)
    print('v_out', v_out)

    v_out.backward()  # 反向传播
    print('grad', variable.grad)  # variable的梯度
    print(variable.data.numpy())

    #结果显示
    tensor tensor([[1., 2.],
          [3., 4.]])
    variable tensor([[1., 2.],
          [3., 4.]], requires_grad=True)
    t_out tensor(7.5000)
    v_out tensor(7.5000, grad_fn=<MeanBackward0>)
    grad tensor([[0.5000, 1.0000],
          [1.5000, 2.0000]])
    [[1. 2.]
    [3. 4.]]

    2 激励函数(Activation Function)

    对于多层神经网络,激励函数的选择有一定窍门

    推荐网络与激活函数的对应:

    • CNN-relu

    • RNN-relu/tanh

    有三种常用激活函数:(这里说的是线图)

    relu、sigmoid、tanh

    import torch
    from torch.autograd import Variable
    import matplotlib.pyplot as plt

    x = torch.linspace(-5, 5, 200)  # 从-5~5分成200段
    x = Variable(x)
    x_np = x.data.numpy()

    y_relu = torch.relu(x).data.numpy()
    y_sigmoid = torch.sigmoid(x).data.numpy()
    y_tanh = torch.tanh(x).data.numpy()

    plt.figure(1, figsize=(8, 6))
    plt.subplot(311)
    plt.plot(x_np, y_relu, c='r', label='relu')
    plt.ylim((-1, 5))
    plt.legend(loc='best')

    plt.subplot(312)
    plt.plot(x_np, y_sigmoid, c='g', label='sigmoid')
    plt.ylim((-0.2, 1.5))
    plt.legend(loc='best')

    plt.subplot(313)
    plt.plot(x_np, y_tanh, c='b', label='tanh')
    plt.ylim((-1.2, 1.5))
    plt.legend(loc='best')
    plt.show()

    #结果显示

    3 Regression回归(关系拟合回归)

    一般分为两种:

    • 回归问题:一堆数据出一条线

    • 分类问题:一堆数据进行分类

    我们讲的是回归问题:

    import torch
    from torch.autograd import Variable
    import matplotlib.pyplot as plt

    x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)  # 一维变二维
    y = x.pow(2) + 0.2*torch.rand(x.size())

    x, y = Variable(x), Variable(y)

    # plt.scatter(x.data.numpy(), y.data.numpy())
    # plt.show()

    # 搭建网络
    class Net(torch.nn.Module):
       def __init__(self, n_features, n_hidden , n_output):
           super(Net, self).__init__()
           # 以上为固定的初始化
           self.hidden = torch.nn.Linear(n_features, n_hidden)
           self.predict = torch.nn.Linear(n_hidden, n_output)

       def forward(self, x):
           x = torch.relu(self.hidden(x))
           x = self.predict(x)
           return x

    net = Net(1, 10, 1)  # 1个输入点,10个隐藏层的节点,1个输出
    print(net)

    plt.ion()  # 可视化
    plt.show()

    optimizer = torch.optim.SGD(net.parameters(), lr=0.5)
    loss_function = torch.nn.MSELoss()  # 回归问题用均方误差,分类问题用其他的误差损失函数

    for t in range(100):
       out = net(x)
       loss = loss_function(out, y)  # 预测值在前真实值在后
       optimizer.zero_grad()
       loss.backward()
       optimizer.step()
       if t % 5 == 0:
           plt.cla()
           plt.scatter(x.data.numpy(), y.data.numpy())
           plt.plot(x.data.numpy(), out.data.numpy(), 'r-', lw=5)
           plt.text(0.5, 0, 'Loss=%.4f' % loss.item(), fontdict={'size': 20, 'color': 'red'})
           plt.pause(0.1)

    plt.ioff()
    plt.show()

    #结果显示
    Net(
    (hidden): Linear(in_features=1, out_features=10, bias=True)
    (predict): Linear(in_features=10, out_features=1, bias=True)
    )

    最终输出的结果图:

     

    4 Classification(分类)

    import torch
    from torch.autograd import Variable
    import matplotlib.pyplot as plt

    n_data = torch.ones(100, 2)
    x0 = torch.normal(2*n_data, 1)
    y0 = torch.zeros(100)
    x1 = torch.normal(-2*n_data, 1)
    y1 = torch.ones(100)
    x = torch.cat((x0, x1), 0).type(torch.FloatTensor)
    y = torch.cat((y0, y1), ).type(torch.LongTensor)

    x, y = Variable(x), Variable(y)

    # plt.scatter(x.data.numpy(), y.data.numpy())
    # plt.show()

    # 搭建网络
    class Net(torch.nn.Module):
       def __init__(self, n_features, n_hidden , n_output):
           super(Net, self).__init__()
           # 以上为固定的初始化
           self.hidden = torch.nn.Linear(n_features, n_hidden)
           self.predict = torch.nn.Linear(n_hidden, n_output)

       def forward(self, x):
           x = torch.relu(self.hidden(x))
           x = self.predict(x)
           return x

    net = Net(2, 10, 2)  # 2个输入点,10个隐藏层的节点,2个输出
    print(net)

    plt.ion()  # 可视化
    plt.show()

    optimizer = torch.optim.SGD(net.parameters(), lr=0.2)
    loss_function = torch.nn.CrossEntropyLoss()

    for t in range(10):  # 训练的步数
       out = net(x)
       loss = loss_function(out, y)  # 预测值在前真实值在后
       optimizer.zero_grad()
       loss.backward()
       optimizer.step()
       if t % 2 == 0:
           plt.cla()
           out = torch.softmax(out, 1)
           prediction = torch.max(out, 1)[1]  # 如果索引为1则为最大值所在位置,如果为0,则为最大值本身
           pred_y = prediction.data.numpy().squeeze()
           target_y = y.data.numpy()
           plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=pred_y, s=100)
           accuracy = sum(pred_y == target_y) / 200
           plt.text(1.5, -4, 'Accuracy=%.4f' % accuracy, fontdict={'size': 20, 'color': 'red'})
           plt.pause(0.1)

    plt.ioff()
    plt.show()

    #结果显示

    5 Torch网络

    5.1 快速搭建torch网络

    # 搭建网络
    class Net(torch.nn.Module):
       def __init__(self, n_features, n_hidden , n_output):
           super(Net, self).__init__()
           # 以上为固定的初始化
           self.hidden = torch.nn.Linear(n_features, n_hidden)
           self.predict = torch.nn.Linear(n_hidden, n_output)

       def forward(self, x):
           x = torch.relu(self.hidden(x))
           x = self.predict(x)
           return x

    net1 = Net(2, 10, 2)  # 2个输入点,10个隐藏层的节点,2个输出
    print(net1)

    net2 = torch.nn.Sequential(
       torch.nn.Linear(2, 10),
       torch.nn.ReLU(),
       torch.nn.Linear(10, 2),
    )
    print(net2)

    这里的net1与net2其实是一样的,其中多数用第二种方式进行模型搭建,net2与tensorflow中的搭建方式一样。

    5.2 保存和提取网络与参数

    import torch
    from torch.autograd import Variable
    import matplotlib.pyplot as plt

    torch.manual_seed(1)

    x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)  # 一维变二维
    y = x.pow(2) + 0.2*torch.rand(x.size())

    x, y = Variable(x, requires_grad=False), Variable(y, requires_grad=False)  # 当requires_grade为False时,不用求梯度

    def save():
       net1 = torch.nn.Sequential(
           torch.nn.Linear(1, 10),
           torch.nn.ReLU(),
           torch.nn.Linear(10, 1),
      )
       optimizer = torch.optim.SGD(net1.parameters(), lr=0.05)
       loss_function = torch.nn.MSELoss()

       for t in range(1000):  # 训练的步数
           prediction = net1(x)
           loss = loss_function(prediction, y)  # 预测值在前真实值在后
           optimizer.zero_grad()
           loss.backward()
           optimizer.step()

       torch.save(net1, 'net.pkl')  # 保存模型
       torch.save(net1.state_dict(), 'net_params.pkl')  # 保存所有节点

       plt.figure(1, figsize=(10, 3))
       plt.subplot(131)
       plt.title('Net1')
       plt.scatter(x.data.numpy(), y.data.numpy())
       plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)

    def restore_net():
       net2 = torch.load('net.pkl')
       prediction = net2(x)
       plt.subplot(132)
       plt.title('Net2')
       plt.scatter(x.data.numpy(), y.data.numpy())
       plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)

    def restore_params():
       net3 = torch.nn.Sequential(
           torch.nn.Linear(1, 10),
           torch.nn.ReLU(),
           torch.nn.Linear(10, 1),
      )
       net3.load_state_dict(torch.load('net_params.pkl'))
       prediction = net3(x)
       plt.subplot(133)
       plt.title('Net3')
       plt.scatter(x.data.numpy(), y.data.numpy())
       plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
       plt.show()

    save()
    restore_net()
    restore_params()

    #结果显示

    5.3 批处理

    import torch
    import torch.utils.data as Data

    BATCH_SIZE = 5  # 一小批5个训练

    x = torch.linspace(1, 10, 10)
    y = torch.linspace(10, 1, 10)

    torch_dataset = Data.TensorDataset(x, y)
    loader = Data.DataLoader(
       dataset=torch_dataset,
       batch_size=BATCH_SIZE,
       shuffle=True,
       num_workers=2,
    )  # shuffle就是定义是否打乱数据顺序, num_workers就是用几个线程进行提取

    def show_batch():
       for epoch in range(3):  # 总体训练三次
           for step, (batch_x, batch_y) in enumerate(loader):
               print('Epoch: ', epoch, '| Step: ', step, '| batch x: ', batch_x.numpy(), '| batch y: ', batch_y.numpy())

    if __name__ == '__main__':
       show_batch()
       
    #结果显示
    Epoch:  0 | Step:  0 | batch x: [10.  1.  2.  9.  4.] | batch y: [ 1. 10.  9.  2.  7.]
    Epoch:  0 | Step:  1 | batch x: [5. 7. 6. 3. 8.] | batch y: [6. 4. 5. 8. 3.]
    Epoch:  1 | Step:  0 | batch x: [3. 1. 2. 7. 5.] | batch y: [ 8. 10.  9.  4.  6.]
    Epoch:  1 | Step:  1 | batch x: [10.  4.  9.  8.  6.] | batch y: [1. 7. 2. 3. 5.]
    Epoch:  2 | Step:  0 | batch x: [10.  7.  1.  5.  4.] | batch y: [ 1.  4. 10.  6.  7.]
    Epoch:  2 | Step:  1 | batch x: [9. 3. 8. 6. 2.] | batch y: [2. 8. 3. 5. 9.]

    5.3 优化器optimizer加速神经网络

    • 所有的优化器都是更新我们神经网络的参数,例传统更新方法:

     
    • Adam方法

    m为下坡属性,v为阻力属性

     
    import torch
    import torch.utils.data as Data
    # from torch.autograd import Variable
    import matplotlib.pyplot as plt

    LR = 0.02
    BATH_SIZE = 32
    EPOCH = 12

    x = torch.unsqueeze(torch.linspace(-1, 1, 1000), dim=1)
    y = x.pow(2) + 0.1*torch.normal(torch.zeros(*x.size()))

    # plt.scatter(x.numpy(), y.numpy())
    # plt.show()

    torch_dataset = Data.TensorDataset(x, y)
    loader = Data.DataLoader(dataset=torch_dataset, batch_size=BATH_SIZE, shuffle=True, num_workers=2)

    # class Net(torch.nn.Module):
    #     def __init__(self, n_features=1, n_hidden=20 , n_output=1):
    #         super(Net, self).__init__()
    #         # 以上为固定的初始化
    #         self.hidden = torch.nn.Linear(n_features, n_hidden)
    #         self.predict = torch.nn.Linear(n_hidden, n_output)
    #
    #     def forward(self, x):
    #         x = torch.relu(self.hidden(x))
    #         x = self.predict(x)
    #         return x
    net = torch.nn.Sequential(
       torch.nn.Linear(1, 20),
       torch.nn.ReLU(),
       torch.nn.Linear(20, 1)
    )

    net_SGD = net
    # net_Momentum = net
    # net_RMSprop = net
    net_Adam = net
    nets = [net_SGD, net_Adam]

    opt_SGD = torch.optim.SGD(net_SGD.parameters(), lr=LR)
    # opt_Momentum = torch.optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.7)
    # opt_RMSprop = torch.optim.RMSprop(net_RMSprop.parameters(), lr=LR, alpha=0.9)
    opt_Adam = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99))
    optimizers = [opt_SGD, opt_Adam]

    loss_func = torch.nn.MSELoss()
    losses_his = [[], []]

    def show_batch():
       for epoch in range(EPOCH):
           print(epoch)
           for step, (batch_x, batch_y) in enumerate(loader):
               # b_x = Variable(batch_x)
               # b_y = Variable(batch_y)
               for net, opt, l_his in zip(nets, optimizers, losses_his):
                   output = net(batch_x)
                   loss = loss_func(output, batch_y)
                   opt.zero_grad()
                   loss.backward()
                   opt.step()
                   l_his.append(loss.item())
                   # print('1111', l_his)

       labels = ['SGD', 'Adam']
       for i, l_his in enumerate(losses_his):
           plt.plot(l_his, label=labels[i])
       plt.legend(loc='best')
       plt.xlabel('Steps')
       plt.ylabel('Loss')
       plt.ylim((0, 0.2))
       plt.show()

    if __name__ == '__main__':
       show_batch()
    #结果显示

    6 神经网络分类

    • CNN 卷积神经网络

    import torch
    import torch.nn as nn
    import torch.utils.data as Data
    import torchvision
    import matplotlib.pyplot as plt

    EPOCH = 1
    BATCH_SIZE = 50
    LR = 0.001
    DOWNLOAD_MNIST = True

    train_data = torchvision.datasets.MNIST(
       root='./mnist',
       train=True,
       transform=torchvision.transforms.ToTensor(),  # 将三维数据压缩成二维的(0, 1)
       download=DOWNLOAD_MNIST
    )
    # print(train_data.data.size())
    # print(train_data.targets.size())
    # plt.imshow(train_data.data[0].numpy(), cmap='gray')
    # plt.title('%i' % train_data.targets[0])
    # plt.show()

    train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True, num_workers=2)

    test_data = torchvision.datasets.MNIST(root='./mnist/', train=False)
    test_x = torch.unsqueeze(test_data.data, dim=1).type(torch.FloatTensor)[:2000]/255.
    test_y = test_data.targets[:2000]

    class CNN(nn.Module):
       def __init__(self):
           super(CNN, self).__init__()
           self.conv1 = nn.Sequential(
               nn.Conv2d(
                   in_channels=1,
                   out_channels=16,
                   kernel_size=5,
                   stride=1,
                   padding=2,  # padding=(kernel_size-1)/2
              ),
               nn.ReLU(),
               nn.MaxPool2d(kernel_size=2,),
          )
           self.conv2 = nn.Sequential(
               nn.Conv2d(16, 32, 5, 1, 2),
               nn.ReLU(),
               nn.MaxPool2d(2)
          )
           self.out = nn.Linear(32 * 7 * 7, 10)

       def forward(self, x):
           x = self.conv1(x)
           x = self.conv2(x)
           x = x.view(x.size(0), -1)  # 这里的size就是conv2的输出,-1就是展平
           output = self.out(x)
           return output

    cnn = CNN()

    optimizer = torch.optim.Adam(cnn.parameters(), lr=LR)
    loss_func = nn.CrossEntropyLoss()

    def show_batch():
       for epoch in range(EPOCH):
           print(epoch)
           for step, (batch_x, batch_y) in enumerate(train_loader):
               # b_x = Variable(batch_x)
               # b_y = Variable(batch_y)
               output = cnn(batch_x)
               loss = loss_func(output, batch_y)
               optimizer.zero_grad()
               loss.backward()
               optimizer.step()

               if step % 50 == 0:
                   test_output = cnn(test_x)
                   pred_y = torch.max(test_output, 1)[1].data.squeeze()
                   accuracy = sum(pred_y == test_y) / float(test_y.size(0))
                   print('Epoch: ', epoch, '| train loss: %.4f' % loss.item(), '| test accuracy: %2f' % accuracy)
       test_output = cnn(test_x[:10])
       pred_y = torch.max(test_output, 1)[1].data.numpy().squeeze()
       print(pred_y, 'prediction number')
       print(test_y[:10].numpy(), 'real number')

    if __name__ == '__main__':
       show_batch()

    #结果显示
    0
    Epoch:  0 | train loss: 2.2959 | test accuracy: 0.107000
    ……
    Epoch:  0 | train loss: 0.0895 | test accuracy: 0.981500
    [7 2 1 0 4 1 4 9 5 9] prediction number
    [7 2 1 0 4 1 4 9 5 9] real number

    Process finished with exit code 0
    • RNN 循环神经网络(一般用在时间顺序上)

    • LSTM 长短时记忆网络(RNN的一种,就是加了输入输出与中断三个门控单元)

    # 分类
    import torch
    from torch import nn
    import torchvision.datasets as dsets
    import torchvision.transforms as transforms
    import matplotlib.pyplot as plt
    import torch.utils.data as Data

    EPOCH = 1
    BATCH_SIZE = 64
    TIME_STEP = 28
    INPUT_SIZE = 28
    LR = 0.01
    DOWNLOAD_MNIST = False  # 如果下载了mnist数据集则为false,没有则设置为true

    train_data = dsets.MNIST(root='./mnist', train=True, transform=transforms.ToTensor(), download=DOWNLOAD_MNIST)
    train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True, num_workers=2)

    test_data = dsets.MNIST(root='./mnist/', train=False)
    test_x = test_data.data.type(torch.FloatTensor)[:2000]/255.
    test_y = test_data.targets.numpy().squeeze()[:2000]

    class RNN(nn.Module):
       def __init__(self):
           super(RNN, self).__init__()

           self.rnn = nn.LSTM(
               input_size=INPUT_SIZE,
               hidden_size=64,
               num_layers=1,  # hidden层数
               batch_first=True,  # (batch, time_step, input)默认形式
          )
           self.out = nn.Linear(64, 10)

       def forward(self, x):
           r_out, (h_n, h_c) = self.rnn(x, None)  # h_n与h_c表示分线程与主线程的隐藏层,None表示第一个隐藏层是否有
           out = self.out(r_out[:, -1, :])
           return out

    rnn = RNN()
    print(rnn)

    # 训练
    optimizer = torch.optim.Adam(rnn.parameters(), lr=LR)
    loss_func = nn.CrossEntropyLoss()

    def show_batch():
       for epoch in range(EPOCH):
           for step, (x, y) in enumerate(train_loader):
               output = rnn(x.view(-1, 28, 28))
               loss = loss_func(output, y)
               optimizer.zero_grad()  # 清零
               loss.backward()
               optimizer.step()  # 优化器优化

               if step % 50 == 0:
                   test_output = rnn(test_x)
                   pred_y = torch.max(test_output, 1)[1].data.numpy().squeeze()
                   accuracy = sum(pred_y == test_y) / test_y.size
                   print('Epoch: ', epoch, '| train loss: %.4f' % loss.item(), '| test accuracy: %2f' % accuracy)

       test_output = rnn(test_x[:10].view(-1, 28, 28))
       pred_y = torch.max(test_output, 1)[1].data.numpy().squeeze()
       print(pred_y, 'prediction number')
       print(test_y[:10], 'real number')

    if __name__ == '__main__':
       show_batch()
       
    #结果显示
    Epoch:  0 | train loss: 2.2838 | test accuracy: 0.089500
    Epoch:  0 | train loss: 0.9505 | test accuracy: 0.600500
    ……
    Epoch:  0 | train loss: 0.1406 | test accuracy: 0.946000
    [7 2 1 0 4 1 4 9 5 9] prediction number
    [7 2 1 0 4 1 4 9 5 9] real number
    # 回归
    import torch
    from torch import nn
    import numpy as np
    import matplotlib.pyplot as plt
    import torch.utils.data as Data

    torch.manual_seed(1)  # 设置一个种子,让每个训练的网络初始化相同

    TIME_STEP = 10
    INPUT_SIZE = 1
    LR = 0.02

    # steps = np.linspace(0, np.pi*2, 100, dtype=np.float32)
    # x_np = np.sin(steps)
    # y_np = np.cos(steps)
    # plt.plot(steps, y_np, 'r-', label='target (cos)')
    # plt.plot(steps, x_np, 'b-', label='input (sin)')
    # plt.legend(loc='best')
    # plt.show()

    class RNN(nn.Module):
       def __init__(self):
           super(RNN, self).__init__()

           self.rnn = nn.RNN(
               input_size=INPUT_SIZE,
               hidden_size=32,
               num_layers=1,  # hidden层数
               batch_first=True,  # (batch, time_step, input)默认形式
          )
           self.out = nn.Linear(32, 1)

       def forward(self, x, h_state):
           r_out, h_state = self.rnn(x, h_state)  # x包含很多步的,h_state只包含一步
           outs = []
           for time_step in range(r_out.size(1)):
               outs.append(self.out(r_out[:, time_step, :]))
           return torch.stack(outs, dim=1), h_state  #

    rnn = RNN()
    print(rnn)

    # 训练
    optimizer = torch.optim.Adam(rnn.parameters(), lr=LR)
    loss_func = nn.MSELoss()

    plt.figure(1, figsize=(12, 5))
    plt.ion()

    h_state = None
    for step in range(60):
       start, end = step * np.pi, (step + 1) * np.pi
       steps = np.linspace(start, end, TIME_STEP, dtype=np.float32)
       x_np = np.sin(steps)
       y_np = np.cos(steps)
       x = torch.from_numpy(x_np[np.newaxis, :, np.newaxis])
       y = torch.from_numpy(y_np[np.newaxis, :, np.newaxis])

       prediction, h_state = rnn(x, h_state)
       h_state = h_state.data  #
       loss = loss_func(prediction, y)
       optimizer.zero_grad()
       loss.backward()
       optimizer.step()

       plt.plot(steps, y_np.flatten(), 'r-')
       plt.plot(steps, prediction.data.numpy().flatten(), 'b-')
       plt.draw()
       plt.pause(0.05)

    plt.ioff()
    plt.show()

    #结果显示

     

  • 相关阅读:
    基于Docker的Mysql主从复制搭建
    Docker操作命令——查看、停止、删除容器
    Git命令
    未定义数组下标: 0
    zookeeper-3.4.14单机多端口集群搭建
    使用MAT分析dump文件定位程序问题
    intellij idea2019.1中文破解版安装
    vscode打造golang开发环境
    python项目开发环境模块安装记录
    shell用法
  • 原文地址:https://www.cnblogs.com/minyuan/p/13960119.html
Copyright © 2011-2022 走看看