zoukankan      html  css  js  c++  java
  • 数竞大佬jhc的三角函数复习题

    本文作者MiserWeyte
    班主任让数竞大佬jhc整理的三角函数复习题,我参与编辑完成。个别题目来自参考书。度盘pdf格式下载:复习题提取码419d答案提取码5a12


    “单纯”的运算

    本文由蒋浩川原创,由(MiserWeyte)使用(LaTeX)编辑,采用CC BY-SA 4.0协议发布。

    一、公式

    1、三角比

    (sinalpha=dfrac{y}{r})
    (cosalpha=dfrac{x}{r})
    ( analpha=dfrac{y}{x})

    2、三角函数线

    单位圆中:

    (sinalpha=|HY|)
    (cosalpha=|OY|)
    ( analpha=| JL|)

    3.诱导公式xN

    (sin(-alpha)=-sinalpha cos(-alpha)=cosalpha an(-alpha)=- analpha)
    (sin(pi-alpha)=sinalpha cos(pi-alpha)=-cosalpha an(pi-alpha)=- analpha)
    (sin(pi+alpha)=-sinalpha cos(pi+alpha)=-cosalpha an(pi+alpha)= analpha)
    (sin(frac{pi}{2}+alpha)=cosalpha cos(frac{pi}{2}+alpha)=-sinalpha an(frac{pi}{2}+alpha)=-frac{1}{ analpha})
    (sin(frac{pi}{2}-alpha)=cosalpha cos(frac{pi}{2}-alpha)=sinalpha an(frac{pi}{2}-alpha)=frac{1}{ analpha})

    4.和差倍半

    (sin(alpha+eta)=sinalphacoseta+cosalphasineta)
    (cos(alpha+eta)=cosalphacoseta-sinalphasineta)
    ( an(alpha+eta)=frac{ analpha+ aneta}{1- analpha aneta})

    (sin(alpha-eta)=sinalphacoseta-cosalphasineta)
    (cos(alpha-eta)=cosalphacoseta+sinalphasineta)
    ( an(alpha-eta)=frac{ analpha- aneta}{1+ analpha aneta})

    (sin2alpha=2sinalphacosalpha sin^2frac{alpha}{2}=frac{1-cosalpha}{2})
    (cos2alpha=cos^2alpha-sin^2alpha cos^2frac{alpha}{2}=frac{1+cosalpha}{2})
    ( an2alpha=frac{2 analpha}{1- an^2alpha} an^2frac{alpha}{2}=frac{1-cosalpha}{1+cosalpha})

    5.辅助角公式

    (asinalpha+bcosalpha=sqrt{a^2+b^2}sin(alpha+varphi))
    (varphi=arctanfrac{b}{a})

    6.其他

    (1=sin^2alpha+cos^2alpha)
    (2cos^2alpha=1+cos2alpha)
    (2sin^2alpha=1-cos2alpha)

    二、练习

    1.已知(anglealpha)终边上一点(P(-3m, 4m))(m ot=0),求(alpha)的三个三角比

    2.设(alphain(2kpi, 2kpi+frac{pi}{2})(piin Z)),证明(sinalpha<alpha< analpha)以及(sinalpha+cosalpha>1)

    设:

    [f(x)=egin{cases} sinpi x, x<0\ f(x-1)+1, xge0 end{cases} g(x)=egin{cases} cospi x, x<frac{1}{2}\ g(x-1)+1, xgefrac{1}{2} end{cases} ]

    (f(frac{1}{3})+f(frac{3}{4})+g(frac{1}{4})+g(frac{5}{6}))

    4.求(dfrac{cos(2pi-alpha)cdot an(-alpha-pi)cdot an(3pi-alpha)}{sin(pi-alpha)cdot an(pi-alpha)} (alpha ot=kpi+frac{pi}{2}))

    5.设(kin Z),求证(cos(kpi+alpha)=(-1)^kcosalpha)(sin(kpi+alpha)=(-1)^ksinalpha)

    6.求(alpha)((1)sinalpha=frac{1}{2} (2) analpha=frac{sqrt{3}}{3})

    7.已知( analpha=2)。求:
    ((1)dfrac{sinalpha+3cosalpha}{3sinalpha-4cosalpha} (2)dfrac{sin^2alpha+8sinalphacosalpha-6cos^2alpha}{3sin^2alpha-4cos^2alpha})

    ((3)sin^2alpha-3sinalphacosalpha+4cos^2alpha-2)

    8.求(cos(alpha+frac{5}{12}pi)cos(alpha+frac{pi}{6})+cos(frac{pi}{12}-alpha)cos(frac{pi}{3}-alpha))

    9.已知(sin(alpha+frac{pi}{6})=frac{3}{5})(alphain(frac{pi}{3}, frac{5}{6}pi)),求( an(alpha+frac{5}{12}))

    10.若方程(2sin x+sqrt5cos x=frac{1}{k})有解,求(k)范围。

    11.求(sin10^circcdotsin50^circcdotsin70^circ)

    12.(sinalpha+sineta=)(frac{sqrt2}{2}),求(cosalpha+coseta)范围。

    三、拓展公式

    (sinalpha=dfrac{2 anfrac{alpha}{2}}{1+ an^2frac{alpha}{2}} cosalpha=dfrac{1- an^2frac{alpha}{2}}{1+ an^2frac{alpha}{2}} analpha=dfrac{2 anfrac{alpha}{2}}{1- an^2frac{alpha}{2}})

    和差化积与积化和差略。

    ((sinalphapmcosalpha)^2=1pmsin2alpha)
    ((1+ analpha)(1+ aneta)=2Longleftrightarrowalpha+eta=kpi+frac{pi}{4},kin Z)
    (sin(alpha+eta)cdotsin(alpha-eta)=sin^2alpha-sin^2eta=cos^2eta-cos^2alpha)
    (cos(alpha+eta)cdotcos(alpha-eta)=cos^2alpha-sin^2eta)

    四、综合与提升

    1.<指对幂与三角>已知(alphain(0, frac{pi}{4}))(etain(0, 1)),试比较:
    (x=(sinalpha)^{log_etasinalpha})(y=(cosalpha)^{log_etacosalpha})(z=(sinalpha)^{log_etacosalpha})

    2.<提升>设锐角( heta)使关于(x)的方程(x^2+4xcos heta+frac{1}{ an heta}=0)有重根,求( heta)

    3.<提升>求证(dfrac{cosalpha}{1+sinalpha}-dfrac{sinalpha}{1+cosalpha}=dfrac{2(cosalpha-sinalpha)}{1+cosalpha+sinalpha})

    4.<提升>已知(alphain(-frac{pi}{2},frac{pi}{2}))(alpha ot=0)(etain(0, pi))(eta ot=frac{pi}{2})(sinalpha=sqrt2coseta)( analpha aneta=sqrt3),求(alpha)(eta)

    5.<提升>已知(dfrac{sin^4alpha}{cos^2eta}+dfrac{cos^4alpha}{sin^2eta}=1)(alpha,etain(0,dfrac{pi}{2})),求证(alpha+eta=dfrac{pi}{2})

    6.<提升>求(cosfrac{2}{5}pi+cosfrac{4}{5}pi)


    “单纯”的运算 参考答案

    练习答案

    (1)当(m>0)时,(sinalpha=frac{4}{5})(cosalpha=-frac{3}{5})(sinalpha=-frac{4}{3})
    (2)当(m<0)时,(sinalpha=-frac{4}{5})(cosalpha=frac{3}{5})(sinalpha=-frac{4}{3})
    2.
    如“三角函数线“图,(sinalpha=|HY|,alpha=overset{frown} {HL}, analpha=|JL|)
    ( hereforesinalpha<alpha< analpha)
    ( hereforesinalpha+cosalpha=|OY|+|HY|>|OH|=1)
    3.
    (f(frac{1}{3})=f(-frac{2}{3})+1=-frac{sqrt3}{2}+1, f(frac{3}{4})=f(-frac{1}{4})+1=-frac{sqrt2}{2}+1)
    (g(frac{1}{4})=frac{sqrt2}{2}, g(frac{5}{6})=frac{sqrt3}{2}+1)
    ( herefore)所求(=3)
    4.
    原式(=dfrac{cosalphacdot(- analpha)cdot(- analpha)}{sinalphacdot analpha}=1)
    5.
    蒋浩川说这题显而易见,略QwQ
    6.
    (1)(alpha=2kpi+frac{pi}{6})(2kpi+frac{5}{6}pi (kin Z)) (2)(alpha=kpi+frac{pi}{6} (kin Z))
    7.
    (1)原式(=frac{ analpha+3}{3 analpha-4}=frac{5}{2})(2)原式(=frac{ an^2alpha+8 analpha-6}{3 an^2alpha-4}=frac{7}{4})
    (3)原式(=frac{ an^2alpha-3 analpha+2}{ an^2alpha+1}-2=-frac{8}{5})
    8.
    原式(=cos(alpha+frac{pi}{6})sin(frac{pi}{12}-alpha)+cos(frac{pi}{12}-alpha)sin(alpha+frac{pi}{6})=sinfrac{pi}{4}=frac{sqrt2}{2})
    9.
    ( an(alpha+frac{5}{12}pi)=dfrac{1+ an(alpha+frac{pi}{6})}{1- an(alpha+frac{pi}{6})} ecausesin(alpha+frac{pi}{6})=frac{3}{5},alpha+frac{pi}{6}in(frac{pi}{2},pi))
    ( herefore an(alpha+frac{pi}{6})=-frac{3}{4} herefore)所求(=frac{1}{7})
    10.
    左式$=3sin(alpha+ heta), heta=arctanfrac{sqrt5}{2} $$ herefore(左式)in[-3,3]( ) herefore-3leqfrac{1}{k}leq3 herefore kin[-infty,-frac{1}{3}]cup[frac{1}{3},infty]( 11. 所求)=cos80circcos40circcos20circ=dfrac{frac{1}{8}sin160circ}{sin20^circ}=dfrac{1}{8}( 12. )(sinalpha+sineta)2+(cosalpha+coseta)2=2+2cos(x-y)in[0,4]( )Rightarrowcosalpha+coseta=pmsqrt{2+cos(alpha-y)-frac{1}{2}}in[-frac{sqrt{14}}{2},frac{sqrt{14}}{2}]$

    综合与提升答案

    (ecause f(x)=log_bx)为减函数(,bin(0,1) 0sinalpha<cosalpha<1,alphain(0,frac{pi}{4}))
    (Rightarrowlog_bsinalpha>log_bcosalpha>0)
    (Rightarrow x<z,z<y herefore x<z<y)
    2.
    依题意(Delta=16cos^2 heta-4cot heta=0)(cot heta ot=0)
    ( hereforeDelta=4cot heta(2sin2 heta-1)=0)
    (Rightarrowsin2 heta=frac{1}{2}Rightarrow heta=frac{pi}{12})(frac{5}{12}pi)
    3.
    (dfrac{cosalpha}{1+sinalpha}=dfrac{1-sinalpha}{cosalpha}=dfrac{cosalpha+1-sinalpha}{1+sinalpha+cosalpha})

    (dfrac{sinalpha}{1+cosalpha}=dfrac{1-cosalpha}{sinalpha}=dfrac{sinalpha+1-cosalpha}{1+cosalpha+sinalpha})

    (Rightarrow)所求证成立
    4.
    两式平方并作商,(Rightarrowcos^2alpha=frac{2}{3}sin^2eta)
    (ecausesin^2alpha=2cos^2eta)
    两式相加(Rightarrow2cos^2eta+frac{2}{3}sin^2eta=1Rightarrowsin^2eta=frac{3}{4})
    (ecauseetain(0, pi),eta ot=frac{pi}{2} hereforesineta=frac{sqrt3}{2},eta=frac{pi}{3})(frac{2}{3}pi)

    [ hereforeegin{cases} alpha=frac{pi}{4}\ eta=frac{pi}{3} end{cases} 或 egin{cases} alpha=-frac{pi}{4}\ eta=frac{2}{3}pi end{cases} ]

    (dfrac{sin^2alpha}{coseta}=sin heta dfrac{cos^2alpha}{sineta}=cos heta hetain(0, dfrac{pi}{2}))
    ( hereforesin hetacoseta+sinetacos heta=sin^2alpha+cos^2alpha=1)
    (Rightarrowsin( heta+eta)=1Rightarrowsin heta=coseta hereforedfrac{sin^2alpha}{coseta}=sin heta=coseta)
    ( hereforesinalpha=coseta Q.E.D.)
    6.
    (x=cosfrac{2}{5}pi+cosfrac{4}{5}pi,y=cosfrac{2}{5}pi-cosfrac{4}{5}pi)
    (xcdot y=cos^2frac{2}{5}pi-cos^2frac{4}{5}pi=frac{1}{2}(1+cosfrac{4}{5}pi)-frac{1}{2}(1+cosfrac{5}{8}pi))
    (=frac{1}{2}(cosfrac{4}{5}pi-cosfrac{8}{5}pi)=-frac{1}{2}y)
    (Rightarrow x=-frac{1}{2})

  • 相关阅读:
    第二十一章流 1流的操作 简单
    第二十章友元类与嵌套类 1友元类 简单
    第十九章 19 利用私有继承来实现代码重用 简单
    第二十章友元类与嵌套类 2嵌套类 简单
    第十九章 8链表类Node 简单
    第二十一章流 3用cin输入 简单
    第十九章 10 图书 药品管理系统 简单
    第十九章 11图书 药品管理系统 简单
    第二十一章流 4文件的输入和输出 简单
    第十九章 12 什么时候使用私有继承,什么时候使用包含 简单
  • 原文地址:https://www.cnblogs.com/miserweyte/p/11716415.html
Copyright © 2011-2022 走看看