zoukankan      html  css  js  c++  java
  • 《T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction》 代码解读

    论文链接:https://arxiv.org/abs/1811.05320

    博客原作者Missouter,博客链接https://www.cnblogs.com/missouter/,欢迎交流。

    解读了一下这篇论文github上关于T-GCN的代码,主要分为main文件与TGCN文件两部分,后续有空将会更新其他部分作为baseline代码的解读(鸽)。

    1、main.py

    # -*- coding: utf-8 -*-
    import pickle as pkl
    import tensorflow as tf
    import pandas as pd
    import numpy as np
    import math
    import os
    import numpy.linalg as la
    from input_data import preprocess_data,load_sz_data,load_los_data
    from tgcn import tgcnCell
    #from gru import GRUCell 
    
    from visualization import plot_result,plot_error
    from sklearn.metrics import mean_squared_error,mean_absolute_error
    #import matplotlib.pyplot as plt
    import time
    
    time_start = time.time()
    ###### Settings ######
    flags = tf.app.flags
    FLAGS = flags.FLAGS
    flags.DEFINE_float('learning_rate', 0.001, 'Initial learning rate.')
    flags.DEFINE_integer('training_epoch', 1, 'Number of epochs to train.')
    flags.DEFINE_integer('gru_units', 64, 'hidden units of gru.')
    flags.DEFINE_integer('seq_len',12 , '  time length of inputs.')
    flags.DEFINE_integer('pre_len', 3, 'time length of prediction.')
    flags.DEFINE_float('train_rate', 0.8, 'rate of training set.')
    flags.DEFINE_integer('batch_size', 32, 'batch size.')
    flags.DEFINE_string('dataset', 'los', 'sz or los.')
    flags.DEFINE_string('model_name', 'tgcn', 'tgcn')
    model_name = FLAGS.model_name
    data_name = FLAGS.dataset
    train_rate =  FLAGS.train_rate
    seq_len = FLAGS.seq_len
    output_dim = pre_len = FLAGS.pre_len
    batch_size = FLAGS.batch_size
    lr = FLAGS.learning_rate
    training_epoch = FLAGS.training_epoch
    gru_units = FLAGS.gru_units

    开头部分用于设置训练基本参数;使用flag对参数进行设置与说明。

    if data_name == 'sz':
        data, adj = load_sz_data('sz')
    if data_name == 'los':
        data, adj = load_los_data('los')
    
    time_len = data.shape[0]
    num_nodes = data.shape[1]
    data1 =np.mat(data,dtype=np.float32)
    
    #### normalization
    max_value = np.max(data1)
    data1  = data1/max_value
    trainX, trainY, testX, testY = preprocess_data(data1, time_len, train_rate, seq_len, pre_len)
    
    totalbatch = int(trainX.shape[0]/batch_size)
    training_data_count = len(trainX)

    这部分导入数据集并对数据进行归一化,input_data文件中导入函数如下:

    def load_sz_data(dataset):
        sz_adj = pd.read_csv(r'data/sz_adj.csv',header=None)
        adj = np.mat(sz_adj)
        sz_tf = pd.read_csv(r'data/sz_speed.csv')
        return sz_tf, adj
    
    def load_los_data(dataset):
        los_adj = pd.read_csv(r'data/los_adj.csv',header=None)
        adj = np.mat(los_adj)
        los_tf = pd.read_csv(r'data/los_speed.csv')
        return los_tf, adj

    其中preprocess_data函数根据main函数开头设置的训练集、测试集比例对数据集进行分割:

    def preprocess_data(data, time_len, rate, seq_len, pre_len):
        train_size = int(time_len * rate)
        train_data = data[0:train_size]
        test_data = data[train_size:time_len]
        
        trainX, trainY, testX, testY = [], [], [], []
        for i in range(len(train_data) - seq_len - pre_len):
            a = train_data[i: i + seq_len + pre_len]
            trainX.append(a[0 : seq_len])
            trainY.append(a[seq_len : seq_len + pre_len])
        for i in range(len(test_data) - seq_len -pre_len):
            b = test_data[i: i + seq_len + pre_len]
            testX.append(b[0 : seq_len])
            testY.append(b[seq_len : seq_len + pre_len])
          
        trainX1 = np.array(trainX)
        trainY1 = np.array(trainY)
        testX1 = np.array(testX)
        testY1 = np.array(testY)
        return trainX1, trainY1, testX1, testY1

    接着定义了TGCN函数:

    def TGCN(_X, _weights, _biases):
        ###
        cell_1 = tgcnCell(gru_units, adj, num_nodes=num_nodes)
        cell = tf.nn.rnn_cell.MultiRNNCell([cell_1], state_is_tuple=True)
        _X = tf.unstack(_X, axis=1)
        outputs, states = tf.nn.static_rnn(cell, _X, dtype=tf.float32)
        m = []
        for i in outputs:
            o = tf.reshape(i,shape=[-1,num_nodes,gru_units])
            o = tf.reshape(o,shape=[-1,gru_units])
            m.append(o)
        last_output = m[-1]
        output = tf.matmul(last_output, _weights['out']) + _biases['out']
        output = tf.reshape(output,shape=[-1,num_nodes,pre_len])
        output = tf.transpose(output, perm=[0,2,1])
        output = tf.reshape(output, shape=[-1,num_nodes])
        return output, m, states

    函数开头首先引入了TGCN的计算单元,tgcnCell的解读将在后文进行;使用tf.nn.rnn_cell.MultiRNNCell实现多层神经网络;对输入数据进行处理,创建由RNNCell指定的循环神经网络。接着对每个循环神经网络的输出进行处理,首先重塑结果张量,tf.reshape中参数-1表示计算该维度的大小,以使总大小保持不变;第二维为点的数量,第三维为GRU单元的数量,再紧接上一层张量重塑的结果继续进行重塑,得到由长度为GRU数量列表组成的列表,使用tf.matmul将输出矩阵乘以权重矩阵,biases为偏差,接着重塑输出张量为第二维为数据点的数量,第三维为预测长度的矩阵,再置换输出矩阵,使用transpose按照[0,2,1]重新排列尺寸,进一步重塑为由数据点数目长度列表组成的列表,得到最终输出结果。

    紧接着下一段使用占位符定义输入与标签,随机初始化权重与偏差:

    inputs = tf.placeholder(tf.float32, shape=[None, seq_len, num_nodes])
    labels = tf.placeholder(tf.float32, shape=[None, pre_len, num_nodes])
    
    weights = {
        'out': tf.Variable(tf.random_normal([gru_units, pre_len], mean=1.0), name='weight_o')}
    biases = {
        'out': tf.Variable(tf.random_normal([pre_len]),name='bias_o')}
    调用TGCN模型,得到最终输出、每层输出与最终状态:
    if model_name == 'tgcn':
        pred,ttts,ttto = TGCN(inputs, weights, biases)
    
    y_pred = pred
    定义优化器,根据训练数据方差设置偏差:
    lambda_loss = 0.0015
    Lreg = lambda_loss * sum(tf.nn.l2_loss(tf_var) for tf_var in tf.trainable_variables())
    label = tf.reshape(labels, [-1,num_nodes])
    定义损失函数:
    loss = tf.reduce_mean(tf.nn.l2_loss(y_pred-label) + Lreg)

    对应论文公式(详见上篇博客):

     定义均方根误差:

    error = tf.sqrt(tf.reduce_mean(tf.square(y_pred-label)))
    定义优化迭代器:
    optimizer = tf.train.AdamOptimizer(lr).minimize(loss)

    对迭代训练过程进行初始化:

    variables = tf.global_variables()
    saver = tf.train.Saver(tf.global_variables()) #
    #sess = tf.Session()
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333)
    sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
    sess.run(tf.global_variables_initializer())
    out = 'out/%s'%(model_name)
    #out = 'out/%s_%s'%(model_name,'perturbation')
    path1 = '%s_%s_lr%r_batch%r_unit%r_seq%r_pre%r_epoch%r'%(model_name,data_name,lr,batch_size,gru_units,seq_len,pre_len,training_epoch)
    path = os.path.join(out,path1)
    if not os.path.exists(path):
        os.makedirs(path)

    其中global_variables用于获取程序中的变量,配合train.Saver将训练好的模型参数保存起来,以便以后进行验证或测试。tf.GPUOptions用于限制GPU资源的使用,不过为什么要限制使用三分之一的显存尚不清楚,算训练小技巧嘛?初始化模型的参数后设置输出路径与文件名,不详细讨论。

    文件中的评估模块定义了论文实验部分的指标:均方根误差、平均绝对误差、准确率、确定系数与可方差值。

    def evaluation(a,b):
        rmse = math.sqrt(mean_squared_error(a,b))
        mae = mean_absolute_error(a, b)
        F_norm = la.norm(a-b,'fro')/la.norm(a,'fro')
        r2 = 1-((a-b)**2).sum()/((a-a.mean())**2).sum()
        var = 1-(np.var(a-b))/np.var(a)
        return rmse, mae, 1-F_norm, r2, var

    接下来就是常见的训练部分:

    for epoch in range(training_epoch):
        for m in range(totalbatch):
            mini_batch = trainX[m * batch_size : (m+1) * batch_size]
            mini_label = trainY[m * batch_size : (m+1) * batch_size]
            _, loss1, rmse1, train_output = sess.run([optimizer, loss, error, y_pred],
                                                     feed_dict = {inputs:mini_batch, labels:mini_label})
            batch_loss.append(loss1)
            batch_rmse.append(rmse1 * max_value)
    
         # Test completely at every epoch
        loss2, rmse2, test_output = sess.run([loss, error, y_pred],
                                             feed_dict = {inputs:testX, labels:testY})
        test_label = np.reshape(testY,[-1,num_nodes])
        rmse, mae, acc, r2_score, var_score = evaluation(test_label, test_output)
        test_label1 = test_label * max_value#反归一化
        test_output1 = test_output * max_value
        test_loss.append(loss2)
        test_rmse.append(rmse * max_value)
        test_mae.append(mae * max_value)
        test_acc.append(acc)
        test_r2.append(r2_score)
        test_var.append(var_score)
        test_pred.append(test_output1)
        
        print('Iter:{}'.format(epoch),
              'train_rmse:{:.4}'.format(batch_rmse[-1]),
              'test_loss:{:.4}'.format(loss2),
              'test_rmse:{:.4}'.format(rmse),
              'test_acc:{:.4}'.format(acc))
        if (epoch % 500 == 0):        
            saver.save(sess, path+'/model_100/TGCN_pre_%r'%epoch, global_step = epoch)
            
    time_end = time.time()
    print(time_end-time_start,'s')

    附带对每个周期训练结果的测试、对结果的反归一化,训练设置为每训练500层保存一次模型,并对训练得到的参数指标进行打印与保存。代码最后还给出了可视化数据指标的方法,即将数据指标写入csv文件中:

    b = int(len(batch_rmse)/totalbatch)
    batch_rmse1 = [i for i in batch_rmse]
    train_rmse = [(sum(batch_rmse1[i*totalbatch:(i+1)*totalbatch])/totalbatch) for i in range(b)]
    batch_loss1 = [i for i in batch_loss]
    train_loss = [(sum(batch_loss1[i*totalbatch:(i+1)*totalbatch])/totalbatch) for i in range(b)]
    
    index = test_rmse.index(np.min(test_rmse))
    test_result = test_pred[index]
    var = pd.DataFrame(test_result)
    var.to_csv(path+'/test_result.csv',index = False,header = False)
    #plot_result(test_result,test_label1,path)
    #plot_error(train_rmse,train_loss,test_rmse,test_acc,test_mae,path)
    
    print('min_rmse:%r'%(np.min(test_rmse)),
          'min_mae:%r'%(test_mae[index]),
          'max_acc:%r'%(test_acc[index]),
          'r2:%r'%(test_r2[index]),
          'var:%r'%test_var[index])

    至此对论文对应代码main文件的解读就结束了。

    2、tgcn.py

    此文件只定义了一个TGCN计算单元的类,初始化部分不作详谈:

    # -*- coding: utf-8 -*-
    
    #import numpy as np
    import tensorflow as tf
    from tensorflow.contrib.rnn import RNNCell
    from utils import calculate_laplacian
    
    class tgcnCell(RNNCell):
        """Temporal Graph Convolutional Network """
    
        def call(self, inputs, **kwargs):
            pass
    -
        def __init__(self, num_units, adj, num_nodes, input_size=None,
                     act=tf.nn.tanh, reuse=None):
    
    
            super(tgcnCell, self).__init__(_reuse=reuse)
            self._act = act
            self._nodes = num_nodes
            self._units = num_units
            self._adj = []
            self._adj.append(calculate_laplacian(adj))
    
    
        @property
        def state_size(self):
            return self._nodes * self._units
    
        @property
        def output_size(self):
            return self._units

    重点之一在于对GRU单元的定义:

    def __call__(self, inputs, state, scope=None):
            with tf.variable_scope(scope or "tgcn"):
                with tf.variable_scope("gates"):  
                    value = tf.nn.sigmoid(
                        self._gc(inputs, state, 2 * self._units, bias=1.0, scope=scope))
                    r, u = tf.split(value=value, num_or_size_splits=2, axis=1)
                with tf.variable_scope("candidate"):
                    r_state = r * state
                    c = self._act(self._gc(inputs, r_state, self._units, scope=scope))
                new_h = u * state + (1 - u) * c
            return new_h, new_h

    代码还原论文中tgcn单元的计算过程(详见上一篇博客):

    参数中state对应论文中上一时刻的状态,即ht-1。variable_scope使得多个变量得以有相同的命名;上述代码中tf.nn.sigmoid语句为激活函数,用于进行图卷积GC;tf.split语句用于

    分割卷积后的张量,重置门r用于控制先前时刻状态信息的度量,上传门u用于控制上传到下一状态的信息度量; candidate部分的c对应公式:

     函数最后返回最新状态ht

    图卷积过程最后被定义:

        def _gc(self, inputs, state, output_size, bias=0.0, scope=None):
            ## inputs:(-1,num_nodes)
            
            inputs = tf.expand_dims(inputs, 2)
            ## state:(batch,num_node,gru_units)
            state = tf.reshape(state, (-1, self._nodes, self._units))
            ## concat
            x_s = tf.concat([inputs, state], axis=2)
            input_size = x_s.get_shape()[2].value
            ## (num_node,input_size,-1)
            x0 = tf.transpose(x_s, perm=[1, 2, 0])  
            x0 = tf.reshape(x0, shape=[self._nodes, -1])
      
            scope = tf.get_variable_scope()
            with tf.variable_scope(scope):
                for m in self._adj:
                    x1 = tf.sparse_tensor_dense_matmul(m, x0)
    #                print(x1)
                x = tf.reshape(x1, shape=[self._nodes, input_size,-1])
                x = tf.transpose(x,perm=[2,0,1])
                x = tf.reshape(x, shape=[-1, input_size])
                weights = tf.get_variable(
                    'weights', [input_size, output_size], initializer=tf.contrib.layers.xavier_initializer())
                x = tf.matmul(x, weights)  # (batch_size * self._nodes, output_size)
                biases = tf.get_variable(
                    "biases", [output_size], initializer=tf.constant_initializer(bias, dtype=tf.float32))
                x = tf.nn.bias_add(x, biases)
                x = tf.reshape(x, shape=[-1, self._nodes, output_size])
                x = tf.reshape(x, shape=[-1, self._nodes * output_size])
            return x

    函数开头对特征矩阵进行构建:使用expand_dims增加输入维度,再使用将当前状态转化为第二维为数据点数量,第三维为gru单元数量的列表,使用concat在第二个维度拼接张量,最后得到一个长度为数据点数量的列表。get_variable_scope获取变量后,将得到的特征矩阵与邻接矩阵相乘。在tf.nn.bias_add处激活得到两层GCN,对应公式:

    最终返回输出值x。此函数经历了很多张量的形式转换,对应论文空间关系建模过程。

    关于论文中TGCN部分代码的解读结束了,模块化的编程对于学习实验手法有很多值得学习的地方,对于TGCN本身的实现、涉及张量的处理变换也有很多可以借鉴的地方。

  • 相关阅读:
    Vue 兄弟组件通信(不使用Vuex)
    vue2.0 #$emit,$on的使用
    Bootstrap栅格系统基本使用
    字体图标使用
    js事件委托
    帆布小球碰壁效果
    vuex -- vue的状态管理模式
    JavaScript --经典问题
    总结获取原生JS(javascript)基本操作
    git的基本操作
  • 原文地址:https://www.cnblogs.com/missouter/p/13488342.html
Copyright © 2011-2022 走看看