zoukankan      html  css  js  c++  java
  • poj 2195 Going Home (KM算法)

    呃,省赛已经过去了,生活应该继续~~ 好几天没写博了,一直在研究KM算法,今天算是有点小明白了,做了一道模板题练练手。

    先讲讲我理解的KM算法吧,如果你已经学会二分匹配中的匈牙利算法,那么要理解KM算法就很容易了,其实KM算法就是在匈牙利算法的基础上加上两点的权值。

    首先是相等子图的概念:设顶点Xi的顶标为A[ i ],顶点Yj的顶标为B[ j ],顶点XiYj之间的边权为w[i,j]若由二分图中所有满足A[ i ]+B[j]=w[i,j]的边(i,j)构成的子图称做相等子图。

    如果相等子图中有完备匹配,则这个完备匹配就是该二分图的最大权匹配。

    再解释下什么叫完备匹配:所谓的完备匹配就是在二部图中,X点集中的所有点都有对应的匹配或者是Y点集中所有的点都有对应的匹配,则称该匹配为完备匹配。

    这个定理是显然的。因为对于二分图的任意一个匹配,如果它包含于相等子图,那么它的边权和等于所有顶点的顶标和;如果它有的边不包含于相等子图,那么它的边权和小于所有顶点的顶标和。所以相等子图的完备匹配一定是二分图的最大权匹配。

      初始时为了使A[ i ]+B[j]>=w[i,j]恒成立,令A[ i ]为所有与顶点Xi关联的边的最大权,B[j]=0。如果当前的相等子图没有完备匹配,就按下面的方法修改顶标以使扩大相等子图,直到相等子图具有完备匹配为止。

      我们求当前相等子图的完备匹配失败了,是因为对于某个X顶点,我们找不到一条从它出发的交错路。这时我们获得了一棵交错树,它的叶子结点全部是X顶点。现在我们把交错树中X顶点的顶标全都减小某个值d,Y顶点的顶标全都增加同一个值d,那么我们会发现:

      1)两端都在交错树中的边(i,j),A[ i ]+B[j]的值没有变化。也就是说,它原来属于相等子图,现在仍属于相等子图。

      2)两端都不在交错树中的边(i,j),A[ i ]和B[j]都没有变化。也就是说,它原来属于(或不属于)相等子图,现在仍属于(或不属于)相等子图。

      3)X端不在交错树中,Y端在交错树中的边(i,j),它的A[ i ]+B[j]的值有所增大。它原来不属于相等子图,现在仍不属于相等子图。

      4)X端在交错树中,Y端不在交错树中的边(i,j),它的A[ i ]+B[j]的值有所减小。也就说,它原来不属于相等子图,现在可能进入了相等子图,因而使相等子图得到了扩大。

      现在的问题就是求d值了。为了使A[ i ]+B[j]>=w[i,j]始终成立,且至少有一条边进入相等子图,d应该等于:

      Min{A[ i ]+B[j]-w[i,j] | Xi在交错树中,Yi不在交错树中}。

     

    看看代码比较好理解:

    #include <stdio.h>
    #include <stdlib.h>
    #include <string.h>
    #include <math.h>
    #include <iostream>
    #include <algorithm>
    #define maxx 201
    #define INF 0xffffff
    using namespace std;
    
    struct node
    {
        int x ;
        int y ;
    }h[maxx] , p[maxx] ;
    int mm[maxx][maxx] ;
    int vistx[maxx] ,visty[maxx] ;
    int lx[maxx] , ly[maxx] ;//顶标
    int match[maxx] ;
    int tn , tm ;
    
    int find ( int x )
    {
        int i ;
        vistx[x] = 1;
        for ( i = 0 ; i < tm ; i++ )
        {
            if ( !visty[i] && lx[x] + ly[i] == mm[x][i] )
            {
                visty[i] = 1;
                if ( match[i] == -1 || find ( match[i] ))
                {
                    match[i] = x;
                    return 1;
                }
            }
        }
        return 0;
    }
    
    int main()
    {
        int n , m , i , j , k ;
        char str[maxx];
    
        while ( scanf ( "%d%d" , &n , &m ) , n + m )
        {
            tn = tm = 0;
            for ( i = 0 ; i < n ; i++ )//存储H和m的位置
            {
                cin>>str;
                for ( j = 0 ; j < m ; j++ )
                {
                    if ( str[j] == 'H' )
                    {
                        h[tn].x = i;
                        h[tn].y = j;
                        tn++;
                    }
                    else if ( str[j] == 'm' )
                    {
                        p[tm].x = i ;
                        p[tm].y = j ;
                        tm++;
                    }
                }
            }
            memset( mm , 0 , sizeof ( mm ));//建立连接
            for ( i = 0 ; i < tn ; i++ )
            for ( j = 0 ; j < tm ; j++ )
            mm[i][j] = abs( h[i].x - p[j].x ) + abs( h[i].y - p[j].y );
            memset( lx , 1 , sizeof( lx ));//初始化lx;
            memset( ly , 0 , sizeof( ly ));//
            for ( i = 0 ; i < tn ; i++ )
            for ( j = 0 ; j < tm ; j++ )
            if ( mm[i][j] < lx[i] )
            lx[i] = mm[i][j] ;//如果是最大权值匹配 则初始值顶标取最大值
                            //若是最小匹配则取最小值
            memset( match , -1 , sizeof ( match ));
            for ( i = 0 ; i < tn ; i++ )
            {
                for ( ; ; )
                {
                    memset( vistx , 0 , sizeof ( vistx ));
                    memset( visty , 0 , sizeof ( visty ));
                    if ( find ( i ))//寻找完备匹配 
                    break;
                    int minn = INF ;
                    for ( j = 0 ; j < tn ; j++ )
                    {
                        if ( vistx[j] )//xj点在搜索数上
                        {
                            for ( k = 0 ; k < tm ; k++ )
                            if ( !visty[k] && mm[j][k] - lx[j] -ly[k] < minn )//yk点不在搜索树上,
                            minn = mm[j][k] - lx[j] - ly[k]; //找出顶标最大能改进的d值
                        }
                    }
                    for ( j = 0 ; j < tn ; j++ )//用d来改进搜索树上各点的顶标
                    if ( vistx[j])
                    lx[j] += minn ;
                    for ( j = 0 ; j < tm ; j++ )
                    if ( visty[j] )
                    ly[j] -= minn;
                }
            }
            int sum = 0;
            for ( i = 0 ; i < tm ; i++ )
            sum += mm[match[i]][i];
            cout<<sum<<endl;
        }
    }

     

     

  • 相关阅读:
    Pods
    CentOS 7中firewall防火墙详解和配置以及切换为iptables防火墙
    windows IIS安装php服务及配置
    Linux最常用命令
    kubernetes 基本概念和资源对象汇总
    mysql集群压测
    mysql碰到的问题总结
    python字符串常用内建函数总结
    kubeadm常见报错和解决方法
    ubuntu部署kubeadm1.13.1高可用
  • 原文地址:https://www.cnblogs.com/misty1/p/2506785.html
Copyright © 2011-2022 走看看